幼年关节炎的单基因背景
Monogenic Background of Juvenile Arthritis
DOI: 10.12677/acm.2024.1441307, PDF, HTML, XML, 下载: 35  浏览: 58 
作者: 刘芋巧, 安云飞*:重庆医科大学附属儿童医院风湿免疫科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童感染与免疫罕见病重庆市重点实验室,重庆
关键词: 幼年特发性关节炎单基因免疫出生缺陷Juvenile Idiopathic Arthritis Monogenic Inborn Errors of Immunity
摘要: 幼年特发性关节炎(juvenile idiopathic arthritis, JIA)是儿童期最常见的慢性风湿性疾病,包含一组异质性疾病,机制尚不清楚。受影响患者表型可变提示容易被误诊,少数被发现是单基因突变引起免疫功能异常所致,称为免疫出生缺陷(inborn errors of immunity, IEI)。因此,在症状不典型或难治的情况下,有必要行基因检查。本综述旨在总结JIA的免疫发病机制以及模拟幼年关节炎表型的IEI,提高临床认识和增加对JIA关键分子途径的理解。
Abstract: Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in childhood, including a group of heterogeneous diseases, and the mechanism is still unclear. The variable phenotype of affected patients indicates that they are easily misdiagnosed, and a few are found to be caused by abnormal immune function caused by monogenic mutation, which is called inborn errors of immunity (IEI). Therefore, in the case of atypical or refractory symptoms, it is necessary to carry out genetic testing. This review aims to summarize the immune pathogenesis of JIA and the IEI that mimics the phenotype of juvenile arthritis, improve clinical understanding and increase understanding of the key molecular pathways of JIA.
文章引用:刘芋巧, 安云飞. 幼年关节炎的单基因背景[J]. 临床医学进展, 2024, 14(4): 2398-2405. https://doi.org/10.12677/acm.2024.1441307

1. 引言

幼年特发性关节炎(juvenile idiopathic arthritis, JIA)是最常见的儿童慢性风湿性疾病,一组16岁之前发病以持续时间超过6周的不明原因关节炎为特征的异质性疾病。该病的发病机制复杂,在易感遗传背景和环境因素作用下先天免疫和适应性免疫细胞与常驻滑膜成纤维细胞共同维持受影响关节的慢性炎症 [1] 。国际风湿病协会联盟(International League of Associations for Rheumatology, ILAR)将JIA分为全身型(systemic JIA, sJIA)、少关节型(oligoarticular JIA, oJIA)、多关节型(polyarticular JIA, pJIA)、附着点炎相关关节炎、银屑病关节炎和未分化关节炎,此分类具有一定局限性,不同临床表型的存在以及对药物治疗反应不一致,提示不同患者具有特定的细胞和分子机制驱动持续性炎症。因此,基于发病机制的分类是有必要的,并且采用针对性治疗是合理的。JIA是排除性诊断,没有单一的诊断标志物,难以将其与出现类似表现的模拟疾病区分开,少数患者是单基因遗传,关节炎可能是免疫出生缺陷(inborn errors of immunity, IEI)的突出或首发表现。本综述旨在从细胞角度出发探讨JIA的免疫发病机制以及总结模拟幼年关节炎表型的IEI,提高临床认识和增加对JIA关键分子途径的理解。

2. 致病机制

2.1. T淋巴细胞

oJIA和pJIA与MHCII类等位基因具有强烈相关性,表明CD4+ T辅助细胞(T helper, Th)起关键致病作用 [2] 。炎症被认为是促炎的效应细胞Th1/Th17和抗炎的调节性T细胞(regulatory T-cell, Treg)之间平衡紊乱的结果,Th1细胞表达转录因子T-bet产生干扰素(interferon, IFN) γ和IL-2诱导分化炎性巨噬细胞,Th1和巨噬细胞过度产生肿瘤坏死因子(tumor necrosis factor, TNF) α可以引起滑膜炎 [3] 。Th17细胞表达转录因子ROR-γt产生IL-17,IL-17R主要在成纤维细胞表达,结合后诱导产生多种趋化因子募集中性粒细胞至炎症部位以及刺激IL-6、TNF和IL-1等促炎细胞因子分泌,研究表明还可以增加基质金属蛋白酶(matrix metalloproteinases, MMP)的表达介导关节破坏,然而与Th1相比,Th17细胞在炎症部位少见 [4] [5] 。Th17细胞具有分子可塑性,存在Th17/Th1中间表型,短暂分泌IL-17后持续产生IFNγ,称为非经典Th1细胞,均可以在oJIA患者的滑液中发现 [4] 。另一方面,Treg细胞具有抑制过度免疫反应的作用,当其受到抑制或数量减少时,免疫失衡促进炎症发生。此外,sJIA急性发病时呈现发热和全身性炎症,随后进展为慢性关节炎,研究在对比急性和慢性sJIA患者的T细胞表型时发现Treg细胞通过IL-1诱导出现Th17倾斜,保持抑制能力的同时可以产生IL-17,早期阻断IL-1治疗急性sJIA被证实有效 [6] 。JIA患者滑液中Th细胞可塑性的发现,提出了不同Th细胞亚群在不同疾病阶段发挥关键致病作用,以及根据疾病特定阶段驱动炎症的主要Th亚群实现针对性治疗的可能性。

近年来,发现了更多的Th亚群。T外周辅助细胞(T peripheral helper cell, Tph)是促进炎症组织中B细胞浸润和成熟的T细胞亚群,表达许多B细胞辅助功能相关因子如PD-1、ICOS、IL-21、CXCL13,不表达淋巴样转运受体CXCR5,而表达其他允许进入外周组织的受体,在关节组织驻留而引起炎症 [7] 。在ANA+的oJIA患者研究中用单细胞测序发现Tph细胞富集,并证明与B细胞相互作用,以及可能存在一种能够抵抗Tph细胞活性的Treg亚群 [8] 。

2.2. B淋巴细胞

临床观察强烈支持B细胞在JIA发病机制中的重要作用,相当一部分JIA患者存在自身抗体,例如抗核抗体(antinuclear antibodies, ANA)、类风湿因子(rheumatoid factor, RF)或抗环瓜氨酸肽抗体(anticitrullinated antibodies, ACPA),RF和ACPA与关节畸形有关,ANA阳性提示葡萄膜炎风险增加 [9] 。目前自身抗体在JIA中的致病作用仍有争议,其存在与滑膜组织异位淋巴样结构的发展有关,异位淋巴样结构是T-B细胞的聚集体,自身抗体发育依赖于两个细胞亚群之间的严格合作 [8] [10] 。研究已经证明Tph细胞在滑膜中扩增和富集通过促进B细胞亚群对自身抗原发生耐受性变化,从而促进自身抗体产生 [8] [10] 。在难治性JIA患者中使用利妥昔单抗选择性消耗B细胞的治疗有效,进一步证实B细胞的致病作用。此外,B细胞不仅可以作为自身抗体的来源,还可以作为抗原提呈细胞和产生细胞因子,支持T细胞的活化。

2.3. 先天免疫细胞

越来越多的证据表明,先天免疫细胞在介导和维持自身免疫损伤中起关键作用,如自然杀伤细胞、中性粒细胞和巨噬细胞分泌白细胞介素和趋化细胞因子吸引和促进炎症部位免疫细胞的分化 [1] [11] 。sJIA被归类于多基因自身炎症性疾病,先天免疫系统不受控制导致单核细胞/巨噬细胞、中性粒细胞和未成熟单核细胞前体激活,IL-1β、IL-6、IL-18和吞噬细胞特异性S100蛋白的产生增加 [12] 。巨噬细胞活化综合征(macrophage activation syndrome, MAS)是sJIA严重并发症,某些触发因素导巨噬细胞激活并浸润骨髓和多个器官,特别是肝脏和脾脏。

最近,在oJIA患者的滑液中发现了表型改变和功能障碍的活化中性粒细胞、吞噬能力降低的滑膜单核细胞以及巨噬细胞受损,强调了先天免疫系统在oJIA发病机制中的重要性 [13] [14] 。

2.4. 滑膜细胞

JIA中的滑膜细胞异常增殖导致病理性滑膜和软骨退化。滑膜关节内,滑膜细胞在强烈的炎症环境下不受控制地增殖而增厚,滑膜增生和肥厚导致关节内缺氧,增加促血管生成介质的产生,引发病理性血管生成。研究证明内皮细胞有丝分裂原在JIA患者中上调,包括血管内皮生长因子和血管生成素,与滑膜血管生成有关并且稳定新形成的血管,通过增加血循环和促炎细胞向关节的迁移,形成病理性滑膜 [15] 。粒细胞、巨噬细胞、浆细胞和淋巴细胞积聚在关节内膜下产生TNFα和IL-1β等多种促炎细胞因子,滑膜细胞分解代谢蛋白酶的产生增加,例如Th17细胞促进MMP1和MMP9在成纤维细胞中表达,分解关节软骨组织的细胞外基质,导致软骨破坏进而形成骨侵蚀,部分JIA患者晚期可引起关节强直和运动丧失 [16] 。

3. 免疫出生缺陷

3.1. CTLA4单倍体功能不全/LRBA缺陷

细胞毒性T淋巴细胞抗原-4 (cytotoxic T-lymphocyte antigen-4, CTLA4)是T细胞表面分子,通过与共刺激蛋白CD28竞争结合CD80/CD86活化Treg细胞从而起到免疫抑制作用,脂多糖反应性米色样锚蛋白(lipopolysaccharide-responsive beige-like anchor protein, LRBA)调节CTLA4的表达,两者共同维持免疫耐受。CTLA4单倍体功能不全和LRBA缺陷被归类于常见可变免疫缺陷,以自身免疫、淋巴增殖和体液免疫缺陷为主要表型,在一项133名CTLA4突变携带者的队列中3%患者以关节炎为首发症状,LRBA缺陷患者中也观察到oJIA和PJIA表型,但关于描述关节炎发病年龄和关节受累模式的数据有限,CTLA-4融合蛋白阿巴西普和抑制T细胞活化的mTOR抑制剂西罗莫司治疗有效 [17] [18] 。此外,X-连锁无丙种球蛋白血症、重组激活基因缺陷、Wiskott-Aldrich综合征有报道关节炎表现,与Treg介导免疫耐受受损有关 [19] [20] [21] 。

3.2. COPA综合征/干扰素刺激基因相关的婴儿期血管病变

COPA综合征是一种由涂层亚单位α (coatomer subunit alpha, COPA)基因突变引起的常染色体显性遗传免疫失调疾病,该基因编码参与介导蛋白质从高尔基体向内质网逆行运输的外壳蛋白复合体I的α亚基,胞内运输受阻导致代偿性增加内质网应激反应,激活I型干扰素过表达的炎症级联反应 [22] 。COPA综合征的典型临床特征包括弥漫性肺病、关节炎和肾小球肾炎,关节以多关节受累为主,通常伴有多种自身抗体阳性例如ANA、RF和ACPA,少数呈侵袭性出现骨骼畸形,已报道存在骨坏死和严重糜烂性骨病,JAK抑制剂似乎治疗效果显著 [22] [23] [24] 。干扰素刺激基因相关的婴儿期血管病变(stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy, SAVI)是编码STING蛋白的TMEM173基因功能获得性突变引起的I型干扰素病,所有患者均表现肺部疾病甚至进展为终末期呼吸衰竭,个别报道有类似多关节炎表现,并且已有研究证明COPA突变可以导致STING在高尔基体上积累从而激活I型干扰素通路 [25] [26] 。因此,当间质性肺病合并关节炎时都应予以考虑,可能的差异在于SAVI存在溃疡性皮肤血管病变 [25] 。

3.3. Blau综合征

Blau综合征是一种由核苷酸结合寡聚化结构域2 (nucleotide-binding oligomerization domain 2, NOD2)基因突变引起的系统性自身炎症性肉芽肿疾病。NOD2是一种细胞内病原体识别受体,与胞壁酰二肽(muramyl dipeptide, MDP)结合后激活NF-kB通路,导致促炎细胞因子上调,目前尚不清楚NOD2突变如何参与肉芽肿的形成 [27] [28] 。Blau综合征是关节炎、葡萄膜炎和皮疹的经典三联征:(1) 皮肤病变首发,最常见无明显主观症状的鳞状红斑斑块,伴有多发苔藓样丘疹,可自行消失;(2) 皮疹之后是关节症状,以无痛性对称性多关节炎为主,腕和踝关节表面呈囊性肿胀,手指和脚趾香肠样肿胀,指屈曲畸形是特征性表现;(3) 眼部症状出现晚于皮肤和关节症状,最常见的眼部表现是双侧葡萄膜炎。然而非典型病例与JIA重叠的症状使得做出正确诊断变复杂,延误诊治可导关节挛缩和失明,无痛性关节囊性肿胀和早期腱鞘滑膜受损是有效的鉴别方法 [27] [28] 。在一项123例JIA并发葡萄膜炎或皮肤病变患者靶向NOD2测序的研究中,21.1%的病例可建立Blau综合征的分子诊断,提出9个预测因素包括阳性家族史、关节炎发病年龄在3岁及以下、首发时关节畸形、首发时关节囊肿、腕部受累、关节炎前皮肤病变、皮肤病变出现在3岁及以下甚至6岁及以下、阳性骨科手术史和ANA阴性,通过缩小了候选范围,强调通过选择具有临床适应症的有限人群进行基因检测来提高诊断率 [29] 。目前尚没有针对Blau综合征的特异性治疗方法,以抗TNF治疗为主,早期治疗是有必要的,避免不良预后。

3.4. PAPA综合征

化脓性关节炎、坏疽性脓皮病和痤疮(sterile pyogenic arthritis, pyoderma gangrenosum and acne, PAPA)综合征是脯氨酸丝氨酸苏氨酸磷酸酶相互作用蛋白1 (proline serine threonine phosphatase-interacting protein 1, PSTPIP1)功能获得性突变导致IL-1β异常过量产生的罕见常染色体显性遗传的自身炎症性疾病。目前确切分子机制尚不清楚,PSTPIP1编码一种细胞骨架相关接头蛋白,在细胞骨架组织、调节T细胞和吞噬细胞活化以及IL-1β释放中发挥重要作用,突变位点差异以及PSTPIP1与其他参与免疫反应的细胞内蛋白的复杂相互作用,可能是PAPA综合征可变表达以及不同表型的原因 [30] 。该综合征临床特点包括:(1) 早发的反复发作无菌性关节炎史,特别是在轻微创伤后,常见受累膝和肘关节,治疗不及时可导致进行性关节破坏;(2) 关节症状明显减轻后出现特征性皮肤病变包括坏疽性脓皮病和严重痤疮;(3) 关节液中性粒细胞增多,但细菌培养阴性;(4) 关节急性期影像表现包括大量积液、滑膜炎伴滑膜肥厚、骨髓水肿和软组织肿胀等类似感染表现,但抗感染治疗效果甚微 [31] [32] 。然而同时出现典型三联征表现非常少见或者没有家族史时,早期诊断特别困难,易误诊为JIA。关节液滑膜细胞计数进行性增高和培养阴性可能是一种有用的鉴别方法,但也需考虑非典型病原体所致,往往结合基因检查确诊。目前尚无针对PAPA综合征的标准化治疗方法,IL-1R拮抗剂阿那白滞素已被证明有效 [32] 。

3.5. 家族性地中海热

家族性地中海热(familial mediterranean fever, FMF)是MEFV基因突变导致的常染色体隐性遗传的自身炎症性疾病,该基因编码pyrin蛋白通过调节IL-1β水平抑制炎症反应,临床特征是反复发热和浆膜炎,易被误诊为sJIA [33] 。关节炎表现形式多样,急性期最常见自限性单关节炎,少数慢性化,骶髂炎的报道也越来越多,秋水仙碱是一线用药,若疗效欠佳可选择抗IL-1治疗 [34] 。

3.6. A20单倍体功能不全

A20单倍体功能不全(haploinsufficiency A20, HA20)是新发现的TNFα诱导蛋白3 (tumor necrosis factor alpha-induced protein 3, TNFAIP3)基因突变导致以多器官全身性炎症为特征的单基因自身炎症性疾病。A20是炎症的关键负调节因子,可以抑制NF-κB信号通路,TNFAIP3功能缺失突变导致NF-κB活性抑制不足从而产生过量的促炎症细胞因子包括IL-1β、IL-6、IL-18和TNFα等 [35] 。据统计,在89例HA20患者中有12%最初被诊断为JIA,提出关节炎表型与锌指结构域突变的关系更为密切 [35] 。目前HA20普遍使用激素和免疫抑制剂治疗,广泛的临床异质性使得基因测序明确诊断是必要的。

3.7. 其他

研究表明早发性关节炎家族中存在含漆酶结构域1 (laccase domain-containing 1, LACC1)基因的功能突变,LACC1蛋白由髓系细胞表达,位于PI3K-mTOR通路的下游,与巨噬细胞自噬和脂质代谢有关 [36] 。此外,在LACC1敲除小鼠关节炎模型中进行的实验表明,与野生型相比IL-17和TNFα的表达增加,进一步强调关节炎中先天性免疫的重要性 [37] 。LACC1相关关节炎具有强烈的家族聚集特点,主要是阿拉伯家庭,以类似pJIA和sJIA为表型,女性患病率较高,89.3%患者在3岁以内发病,均炎症指标水平升高,缺乏自身抗体,临床表型可能与突变类型有关 [38] 。Keith A等首次报道了髓样分化初级反应88 (myeloid differentiation primary response 88, MYD88)基因功能获得性突变患者有严重的破坏性关节炎和间歇性皮疹,其滑膜活检显示明显的中性粒细胞浸润 [39] 。MYD88是一种关键衔接蛋白,介导Toll样受体、IL-1R和IL-18R等多种受体的信号传递,研究在患者真皮成纤维细胞中发现中性粒细胞趋化因子和IL-6的产生增加可能导致关节和皮肤表型,先天免疫发挥显著作用 [39] 。最近,两名患有oJIA的同卵双胞胎女孩被发现受到(nuclear Factor, Interleukin 3 Regulated, NFIL3)基因突变影响,该基因是关键的免疫转录因子在NK细胞和Th2细胞产生细胞因子过程的发育和调节中起作用,体外研究表明NFIL3敲除小鼠IL-1β表达增加,关节症状和病程加重 [40] 。此外,研究发现在免疫突触中对正确的细胞溶解颗粒分泌具有至关重要作用的UNC13D基因特定内含子区发生杂合突变被认为是sJIA和复发性MAS的原因,可能与淋巴细胞特异性NF-kB下调受损有关 [41] 。

模拟幼年关节炎表型的IEI的共同特点往往包括发病早、强烈的家族史、症状不典型、难治等等。对于JIA患者何时考虑进行基因检测,目前尚无具体的临床指南。然而,随着遗传服务的主流化,以及更便宜、更先进的下一代测序技术的普及,未来希望我们可以通过增加对JIA的单基因模拟表型的学习,进一步明晰JIA的致病机制,实现更早更准确识别和个体化治疗。

NOTES

*通讯作者。

参考文献

[1] Martini, A., Lovell, D.J., Albani, S., et al. (2022) Juvenile Idiopathic Arthritis. Nature Reviews Disease Primers, 8, Article No. 5.
https://doi.org/10.1038/s41572-021-00332-8
[2] De Silvestri, A., Capittini, C., Poddighe, D., et al. (2017) HLA-DRB1 Alleles and Juvenile Idiopathic Arthritis: Diagnostic Clues Emerging from a Meta-Analysis. Autoimmunity Reviews, 16, 1230-1236.
https://doi.org/10.1016/j.autrev.2017.10.007
[3] Jang, D.I., Lee, A.H., Shin, H.Y., et al. (2021) The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. International Journal of Molecular Sciences, 22, Article 2719.
https://doi.org/10.3390/ijms22052719
[4] Maggi, L., Mazzoni, A., Cimaz, R., et al. (2019) Th17 and Th1 Lymphocytes in Oligoarticular Juvenile Idiopathic Arthritis. Frontiers in Immunology, 10, Article 450.
https://doi.org/10.3389/fimmu.2019.00450
[5] Paroli, M., Spadea, L., Caccavale, R., et al. (2022) The Role of Interleukin-17 in Juvenile Idiopathic Arthritis: From Pathogenesis to Treatment. Medicina, 58, Article 1552.
https://doi.org/10.3390/medicina58111552
[6] Henderson, L.A., Hoyt, K.J., Lee, P.Y., et al. (2020) Th17 Reprogramming of T Cells in Systemic Juvenile Idiopathic Arthritis. JCI Insight, 5, e132508.
https://doi.org/10.1172/jci.insight.132508
[7] Rao, D.A., Gurish, M.F., Marshall, J.L., et al. (2017) Pathologically Expanded Peripheral T Helper Cell Subset Drives B Cells in Rheumatoid Arthritis. Nature, 542, 110-114.
https://doi.org/10.1038/nature20810
[8] Julé, A.M., Lam, K.P., Taylor, M., et al. (2022) Disordered T Cell-B Cell Interactions in Autoantibody-Positive Inflammatory Arthritis. Frontiers in Immunology, 13, Article 1068399.
https://doi.org/10.3389/fimmu.2022.1068399
[9] Mahmud, S.A. and Binstadt, B.A. (2018) Autoantibodies in the Pathogenesis, Diagnosis, and Prognosis of Juvenile Idiopathic Arthritis. Frontiers in Immunology, 9, Article 3168.
https://doi.org/10.3389/fimmu.2018.03168
[10] Fischer, J., Dirks, J., Klaussner, J., et al. (2022) Effect of Clonally Expanded PD-1(High) CXCR5-CD4 Peripheral T Helper Cells on B Cell Differentiation in the Joints of Patients with Antinuclear Antibody-Positive Juvenile Idiopathic Arthritis. Arthritis & Rheumatology, 74, 150-162.
https://doi.org/10.1002/art.41913
[11] La Bella, S., Rinaldi, M., Di Ludovico, A., et al. (2023) Genetic Background and Molecular Mechanisms of Juvenile Idiopathic Arthritis. International Journal of Molecular Sciences, 24, Article 1846.
https://doi.org/10.3390/ijms24031846
[12] Mellins, E.D., Macaubas, C. and Grom, A.A. (2011) Pathogenesis of Systemic Juvenile Idiopathic Arthritis: Some Answers, More Questions. Nature Reviews Rheumatology, 7, 416-426.
https://doi.org/10.1038/nrrheum.2011.68
[13] Arve-Butler, S., Schmidt, T., Mossberg, A., et al. (2021) Synovial Fluid Neutrophils in Oligoarticular Juvenile Idiopathic Arthritis Have an Altered Phenotype and Impaired Effector Functions. Arthritis Research & Therapy, 23, Article No. 109.
https://doi.org/10.1186/s13075-021-02483-1
[14] Schmidt, T., Berthold, E., Arve-Butler, S., et al. (2020) Children with Oligoarticular Juvenile Idiopathic Arthritis Have Skewed Synovial Monocyte Polarization Pattern with Functional Impairment—A Distinct Inflammatory Pattern for Oligoarticular Juvenile Arthritis. Arthritis Research & Therapy, 22, Article No. 186.
https://doi.org/10.1186/s13075-020-02279-9
[15] Świdrowska-Jaros, J. and Smolewska, E. (2018) A Fresh Look at Angiogenesis in Juvenile Idiopathic Arthritis. Central European Journal of Immunology, 43, 325-330.
https://doi.org/10.5114/ceji.2018.80052
[16] Margheri, F., Maggi, L., Biagioni, A., et al. (2021) Th17 Lymphocyte-Dependent Degradation of Joint Cartilage by Synovial Fibroblasts in a Humanized Mouse Model of Arthritis and Reversal by Secukinumab. European Journal of Immunology, 51, 220-230.
https://doi.org/10.1002/eji.202048773
[17] Mazzoni, M., Dell’orso, G., Grossi, A., et al. (2021) Underlying CTLA4 Deficiency in a Patient with Juvenile Idiopathic Arthritis and Autoimmune Lymphoproliferative Syndrome Features Successfully Treated with Abatacept—A Case Report. Journal of Pediatric Hematology Oncology, 43, e1168-e1172.
https://doi.org/10.1097/MPH.0000000000002120
[18] Oz, R.S. and Tesher, M.S. (2019) Arthritis in Children with LRBA Deficiency—Case Report and Literature Review. Pediatric Rheumatology, 17, Article No. 82.
https://doi.org/10.1186/s12969-019-0388-4
[19] Ran, Q.Q., Li, Y.W., Chen, H., et al. (2022) Retrospective Study of 98 Patients with X-Linked Agammaglobulinemia Complicated with Arthritis. Clinical Rheumatology, 41, 1889-1897.
https://doi.org/10.1007/s10067-022-06095-1
[20] Wu, K.Y., Purswani, P., Ujhazi, B., et al. (2019) Arthritis in Two Patients with Partial Recombination Activating Gene Deficiency. Frontiers in Pediatrics, 7, Article 235.
https://doi.org/10.3389/fped.2019.00235
[21] Chen, N., Zhang, Z.Y., Liu, D.W., et al. (2015) The Clinical Features of Autoimmunity in 53 Patients with Wiskott-Aldrich Syndrome in China: A Single-Center Study. European Journal of Pediatrics, 174, 1311-1318.
https://doi.org/10.1007/s00431-015-2527-3
[22] Frémond, M.L. and Nathan, N. (2021) COPA Syndrome, 5 Years after: Where Are We? Joint Bone Spine, 88, Article ID: 105070.
https://doi.org/10.1016/j.jbspin.2020.09.002
[23] Basile, P., Gortani, G., Taddio, A., et al. (2022) A Toddler with an Unusually Severe Polyarticular Arthritis and a Lung Involvement: A Case Report. BMC Pediatrics, 22, Article No. 639.
https://doi.org/10.1186/s12887-022-03716-1
[24] Krutzke, S., Rietschel, C. and Horneff, G. (2020) Baricitinib in Therapy of COPA Syndrome in a 15-Year-Old Girl. European Journal of Rheumatology, 7, S78-S81.
https://doi.org/10.5152/eurjrheum.2019.18177
[25] Clarke, S.L.N., Robertson, L., Rice, G.I., et al. (2020) Type 1 Interferonopathy Presenting as Juvenile Idiopathic Arthritis with Interstitial Lung Disease: Report of a New Phenotype. Pediatric Rheumatology, 18, Article No. 37.
https://doi.org/10.1186/s12969-020-00425-w
[26] Deng, Z., Chong, Z., Law, C.S., et al. (2020) A Defect in COPI-Mediated Transport of STING Causes Immune Dysregulation in COPA Syndrome. Journal of Experimental Medicine, 217, e20201045.
https://doi.org/10.1084/jem.20201045
[27] Ferjani, H.L., Kharrat, L., Ben Nessib, D., et al. (2023) Management of Blau Syndrome: Review and Proposal of a Treatment Algorithm. European Journal of Pediatrics, 183, 1-7.
[28] Matsuda, T., Kambe, N., Takimoto-Ito, R., et al. (2022) Potential Benefits of TNF Targeting Therapy in Blau Syndrome, a NOD2-Associated Systemic Autoinflammatory Granulomatosis. Frontiers in Immunology, 13, Article 895765.
https://doi.org/10.3389/fimmu.2022.895765
[29] Zhong, Z.Y., Dai, L.Y., Ding, J.D., et al. (2023) Molecular Diagnostic Yield for Blau Syndrome in Previously Diagnosed Juvenile Idiopathic Arthritis with Uveitis or Cutaneous Lesions. Rheumatology, 00, 1-9.
https://doi.org/10.1093/rheumatology/kead596
[30] Satoh, T.K. (2024) Genetic Mutations in Pyoderma Gangrenosum, Hidradenitis Suppurativa, and Associated Autoinflammatory Syndromes: Insights into Pathogenic Mechanisms and Shared Pathways. Journal of Dermatology, 51, 160-171.
https://doi.org/10.1111/1346-8138.17028
[31] Martinez-Rios, C., Jariwala, M.P., Highmore, K., et al. (2019) Imaging Findings of Sterile Pyogenic Arthritis, Pyoderma Gangrenosum and Acne (PAPA) Syndrome: Differential Diagnosis and Review of the Literature. Pediatric Radiology, 49, 23-36.
https://doi.org/10.1007/s00247-018-4246-1
[32] Sanz-Cabanillas, J.L., Gómez-García, F., Gómez-Arias, P.J., et al. (2024) Efficacy and Safety of Anakinra and Canakinumab in PSTPIP1-Associated Inflammatory Diseases: A Comprehensive Scoping Review. Frontiers in Immunology, 14, Article 1339337.
https://doi.org/10.3389/fimmu.2023.1339337
[33] Zhong, L.Q., Wang, W., Li, J., et al. (2020) The Association of MEFV Gene Mutations with the Disease Risk and Severity of Systemic Juvenile Idiopathic Arthritis. Pediatric Rheumatology, 18, Article No. 38.
https://doi.org/10.1186/s12969-020-00427-8
[34] Avar-Aydin, P.O., Ozcakar, Z.B., Aydin, F., et al. (2022) The Expanded Spectrum of Arthritis in Children with Familial Mediterranean Fever. Clinical Rheumatology, 41, 1535-1541.
https://doi.org/10.1007/s10067-022-06082-6
[35] Chen, Y., Ye, Z.H., Chen, L.P., et al. (2020) Association of Clinical Phenotypes in Haploinsufficiency A20 (HA20) with Disrupted Domains of A20. Frontiers in Immunology, 11, Article 574992.
https://doi.org/10.3389/fimmu.2020.574992
[36] Omarjee, O., Mathieu, A.L., Quiniou, G., et al. (2021) LACC1 Deficiency Links Juvenile Arthritis with Autophagy and Metabolism in Macrophages. Journal of Experimental Medicine, 218, e20201006.
https://doi.org/10.1084/jem.20201006
[37] Skon-Hegg, C., Zhang, J., Wu, X., et al. (2019) LACC1 Regulates TNF and IL-17 in Mouse Models of Arthritis and Inflammation. The Journal of Immunology, 202, 183-193.
https://doi.org/10.4049/jimmunol.1800636
[38] Wu, Y.L., Wang, S.S., Yin, W., et al. (2023) Clinical Characteristics and Genotype Analysis of a Chinese Patient with Juvenile Arthritis Due to Novel LACC1 Frameshift Mutation and Literature Review. Molecular Genetics & Genomic Medicine, 11, e2175.
https://doi.org/10.1002/mgg3.2175
[39] Sikora, K.A., Bennett, J.R., Vyncke, L., et al. (2018) Germline Gain-of-Function Myeloid Differentiation Primary Response Gene-88 (MYD88) Mutation in a Child with Severe Arthritis. Journal of Allergy and Clinical Immunology, 141, 1943-1947.E9.
https://doi.org/10.1016/j.jaci.2018.01.027
[40] Schlenner, S., Pasciuto, E., Lagou, V., et al. (2019) NFIL3 Mutations Alter Immune Homeostasis and Sensitise for Arthritis Pathology. Annals of the Rheumatic Diseases, 78, 342-349.
https://doi.org/10.1136/annrheumdis-2018-213764
[41] Schulert, G.S., Zhang, M.C., Husami, A., et al. (2018) Novel UNC13D Intronic Variant Disrupting an NF-κB Enhancer in a Patient with Recurrent Macrophage Activation Syndrome and Systemic Juvenile Idiopathic Arthritis. Arthritis & Rheumatology, 70, 963-970.
https://doi.org/10.1002/art.40438