肺癌早期诊断的研究进展
Research Progress in Early Diagnosis of Lung Cancer
DOI: 10.12677/acm.2024.1441308, PDF, HTML, XML, 下载: 59  浏览: 101 
作者: 刘耘沁, 李升锦*:重庆医科大学附属第二医院呼吸与危重症医学科,重庆
关键词: 肺癌早期诊断低剂量螺旋CT支气管镜检查液体活检Lung Cancer Early Stage Diagnosis Low-Dose CT Bronchoscopy Liquid Biopsy
摘要: 在全球范围内肺癌是最常见的癌症,在我国,肺癌则是发病率及死亡率最高的恶性肿瘤,对社会造成了极大的负担。早期肺癌多无明显临床症状及体征,多数肺癌患者出现症状首次就诊时已为晚期,晚期肺癌5年生存率极低,因此探索有效的肺癌早期诊断及诊断方法,对于改善肺癌患者的生存预后有重要意义。目前在我国,低剂量螺旋CT检查是肺癌早期诊断的常见方法,显著提高了早期肺癌诊断率。支气管镜检查作为目前肺癌诊断的常用方法也有着较高的敏感性及特异性。液体活检因其可通过非侵入性方法获取患者组织标本、可实时监测肿瘤动态变化等优点,是目前临床最有前途的肿瘤组织活体检查的替代手段。本文就肺癌早期诊断方法的相关研究进展进行综述。
Abstract: Lung cancer is the most common cancer globally, and in China, it is the malignant tumor with the highest morbidity and mortality rate, causing a great burden to the society. Early stage lung cancer has no obvious clinical symptoms and signs, and most of the lung cancer patients are already in advanced stage when they first visit the doctor with symptoms. The 5-year survival rate of advanced lung cancer is extremely low. Exploring effective early screening and diagnostic methods for lung cancer is of great significance to improve the survival and prognosis of lung cancer patients. At present, low-dose CT examination is a common method for early diagnosis of lung cancer in China, which has significantly improved the diagnosis rate of early lung cancer. Bronchoscopy, as a common method for lung cancer diagnosis, also has high sensitivity and specificity. Liquid biopsy is the most promising clinical alternative to tumor tissue biopsy due to its advantages of obtaining tissue specimens from patients through non-invasive methods and real-time monitoring of tumor dynamic changes. This article reviews the progress of research related to early diagnostic methods for lung cancer.
文章引用:刘耘沁, 李升锦. 肺癌早期诊断的研究进展[J]. 临床医学进展, 2024, 14(4): 2406-2413. https://doi.org/10.12677/acm.2024.1441308

1. 引言

在全球范围内,肺癌在过去的几十年间一直是最常见的癌症 [1] 。在中国,肺癌则是发病率及死亡率最高的恶性肿瘤,根据数据统计截止2022年,中国的肺癌预估发病数可能首次突破百万来到106万,预估死亡数则可能达到73万,两项数据均遥遥领先其他癌症。据统计,肺癌的主要病因仍是吸烟,且吸烟占男性肺癌患者约24%的死亡原因 [2] 。现有数据显示,肺癌的5年总生存率较低,约为10%至20%,出现远处转移的晚期肺癌患者5年生存率不到10% [3] 。早期肺癌多无明显临床症状及体征,该阶段的诊断率只有15% [4] ,但若能早期发现肺癌,手术切除能带来良好的预后。故在早期诊断肺癌对降低肺癌患者死亡率、改善生存预后及减轻社会的医疗经济负担都有重要意义。本文综述了包括影像学检查、支气管镜检查及液体活检在内的肺癌早期诊断方法的研究进展。

2. 影像学检查

2.1. 胸部X射线检查(Chest X-Ray Screening, CXR)

20世纪70年代,Frost JK等 [5] 在随机对照实验中将CXR与痰细胞学检查结合,提高了早期肺癌的诊断率及平均存活率。同样的,还有实验显示,CXR对于识别周围性肺癌有价值 [6] [7] 。CXR一次辐射大约为0.02 mSv,具有方便与辐射暴露低的优点,但也因其受影像重叠、分辨率低的影响,以及假阴性率显著的缺点 [8] ,CXR几乎不再适用于肺癌早期筛查。

2.2. 低剂量螺旋CT (Low-Dose Computed Tomography, LDCT)

CT平扫是临床检查肺癌最常用的检查方法,相比于CXR其优点在于不同平面的解剖结构不会互相重叠,图像具有更精细的分辨率。胸部CT一次辐射大约为6~10 mSv,由于CT辐射剂量远远超过CXR,其带来的早期肺癌诊断率提高的获益与承受的高辐射暴露的风险不平衡,因此进一步开发了LDCT用于早期肺癌筛查,LDCT一次辐射大约在0.61~1.50 mSv,为普通胸部CT辐射量的1/4甚至1/10,大大降低了辐射暴露。研究显示,与使用CRX行肺癌筛查相比,使用LDCT行筛查的肺癌患者的死亡率降低了约20%,全因死亡率降低了6.7% [9] 。有调查显示,若50至75岁之间的患者每年均接受LDCT筛查,医疗辐射引起的恶性肿瘤的发病率将达到筛查人群的0.5%~5.5% [10] 。相较于CRX,LDCT显著提高了筛查阶段的肺癌诊断率,为肺癌患者带来了获益,虽然存在假阳性率高、过度诊断、辐射暴露等局限性,需在衡量获益与局限性之后再做出选择,但目前LDCT仍是临床筛查肺癌的常用首选检查方法。

2.3. 正电子发射断层显像/X线计算机体层成像仪(Positron Emission Tomography/Computed Tomography, PET/CT)及正电子发射断层显像/磁共振成像仪(Positron Emission Tomography/Magnetic Resonance, PET/MR)

PET/CT及PET/MR为PET与CT或MR的结合,采用正电子核素作为示踪剂,通过病灶部位对电子核素的摄取,一次性获得全身扫描的断层图像,同时可判断肿瘤良恶性、是否有转移,具有灵敏、准确、特异及定位精确等特点。多项研究显示PET/MRI和PET/CT对肺癌TNM阶段评估的诊断能力没有显著差异 [11] 。此外,常用显像剂如氟代脱氧葡萄糖,其代谢并非肿瘤特有,人体正常组织大脑、肝脏可富集,也可能是局部感染炎症反应。以PET/CT为例,一次辐射大约为20~30 mSv,为LDCT辐射量的20~30倍。该类检查具有假阳性率高、成本高、辐射暴露大的缺点,难以用于检查早期肺癌。

2.4. 磁共振成像(Magnetic Resonance Imaging, MRI)

因LDCT仍存在辐射暴露,激发了关于是否可使用无辐射暴露的MRI作为早期肺癌检查方法的研究。Sommer G等人的研究 [12] 证明,由于其固有的软组织造影剂,MRI对恶性结节比对良性结节更敏感,且其假阳性率比LDCT低,使其可能成为检测早期肺癌的有效检查方法。也有研究表明,MRI对磨玻璃浸润的结节具有类似甚至更高的敏感性 [13] 。但以上研究没有将健康个体作为阴性对照,故仍需要更大规模的数据进一步证明将MRI应用于早期肺癌检查的实用性。

3. 支气管镜检查

3.1. 电子支气管镜

这是诊断肺癌最常用的方法,其常结合肺泡灌洗、刷检以及经支气管镜肺活体组织检查(transbronchial lung biopsy, TBLB)等方法以获得细胞学和组织学明确诊断。电子支气管镜常用于诊断中央型肺癌,其对周围型肺癌的诊断价值有限。

3.2. 自发性荧光支气管镜(Autofluorescence Bronchoscopy, AFB)

在波长为380至440纳米的光线激发下,组织会产生自发荧光,这就是AFB的工作原理,Lam S等人的实验 [14] 证明其较普通白光支气管镜在诊断癌前病变和早期癌症病变方面具有优势。Escarguel B等人的研究 [15] 中有47.8%的患者检测到荧光异常,76%的样本发现组织学异常。Moghissi K等人的统计数据 [16] 显示,当AFB用于异型增生和原位癌的识别和定位时,其灵敏度比普通白光支气管镜高25%~47% (平均33%),其特异性比WLB低7%~18% (平均11%)。虽然其对诊断早期中央型肺癌具有优势,但是同样因其无法检查细支气管及以下级别的结构,AFB对周围型肺癌的诊断价值有限。

3.3. 超声支气管镜

支气管内超声引导下的经支气管针穿刺(Endobronchial ultrasound-guided transbronchial needle aspiration, EBUS-TBNA)是一种较新的技术,它允许对支气管附近的所有胸内淋巴结进行微创取样。有研究表明,该手术对检测纵隔淋巴结转移的敏感性为90% [17] 。在Navani等人的随机对照实验中 [18] ,EBUS-TBNA的敏感性为92%、阴性预测值为90%、诊断准确率为95%。在EBUS-TBNA与传统诊断和分期技术的对比中,前者接受治疗决定的速度更快,其中每位患者的平均检查次数、PET扫描次数和1年后可避免的开胸手术次数均明显减少,而且一次检查即可确诊和分期的患者人数更多 [18] 。EBUS-TBNA可以为45%的患者提供足够的诊断和分期信息,以确定治疗计划 [18] 。

3.4. 导航支气管镜(Navigation Bronchoscopy, NB)

随着影像诊断技术的逐渐成熟,发现肺部周围小病灶的频率越来越高 [19] 。通常情况下,针对病灶部位不同可选择TBLB、经皮肺穿刺活检或手术活检以明确诊断。TBLB的优点是其可通过天然存在的支气管道寻找病灶而不产生额外的损伤,且安全性更高。但同时,其诊断率远远低于经皮肺穿刺活检及手术活检,数据显示,支气管镜检查的总诊断率为53.7%,对肺癌的敏感性在60%~74%之间 [20] ;相比之下,手术活检的诊断率接近100%,经皮肺穿活检的诊断率为86%~97% [20] [21] ,均高于支气管镜检查。因此,有必要进一步提高支气管镜检查的诊断率。

3.4.1. 虚拟支气管镜导航(Virtual Bronchoscopy Navigation, VBN)

虚拟支气管镜导航(VBN)是一种在使用虚拟图像直接观察下引导支气管镜的方法。数据显示,VBN辅助组(67.1%)与非VBN辅助组(59.9%)之间的疾病诊断率无显著性差异,但从亚组分析来看,VBN辅助组对右上叶病变、前后位X光片看不见的病变和位于外周三分之一的病变的诊断率明显高于非VBN辅助组。其中,VBN辅助组与非VBN辅助组对于右上叶病变的诊断率分别为81.3%、53.2% [22] 。

3.4.2. 电磁导航支气管镜(Electromagnetic Navigation Bronchoscopy, ENB)

ENB是一种微创、图像引导的方法,可对肺病变进行活检或定位治疗。Folch E E等人的研究 [23] 数据结果显示,ENB对恶性肿瘤的敏感性、特异性、阳性预测值和阴性预测值分别为69%、100%、100%和56%。相比普通的支气管镜检查,其优点是可在同一手术中进行肺活检、采集组织用于分子检测、纵隔分期、靶标或染料标记以方便治疗。同样地,其也具有相较于经皮肺穿刺活检更低的并发症风险,Folch E E等人的另项研究 [24] 提示有4.7%和2.7%的受试者出现气胸和支气管肺出血,分别有3.2%和1.7%的患者需要干预或住院治疗。但同时该研究也显示ENB诊断率较低,仅有61.9%~70.7%,对恶性肿瘤的敏感性仅为62.6% [24] 。

3.4.3. 锥形束投照计算机重组断层影像设备(Cone-Beam CT, CBCT)联合导航支气管镜(CBCT-NB)

CBCT使用围绕患者旋转的X射线管和探测器面板,用锥形X射线捕捉数据,而不是传统CT使用的“切片”,然后通过重建算法生成三维图像。支气管镜检查对周围性肺病变的诊断率不佳,锥形束计算机断层扫描(CBCT)可以用来证实我们的支气管镜导航的准确性,并有望提高其诊断率。Casal R F的研究 [25] 显示,单纯的CT引导下导航和诊断率均为50%,追加CBCT后导航率提高到了75%,诊断率提高到70%。Kawakita N等人的研究数据 [26] 显示,CBCT在总体诊断率方面,CBCT引导组(72.9%)优于CT引导组(47.9%),同时CBCT引导组对恶性病变的诊断率明显更高,其中CT引导组和CBCT引导组分别为61.1% (22/36)和88.2% (30/34)。

3.4.4. 机器人辅助支气管镜(Robotic-Assisted Navigation Bronchoscopy, RANB)

RANB将机器人控制的导管与直接气道可视技术相结合,沿虚拟路径通过气道到达目标结节。机器人组件可以控制导管的推进,并在导管顶端的所有平面上进行精细的定向移动。机器人辅助引导下的支气管镜检查具有连续可视化、安全性高以及对小的孤立性肺结节取样能力强的优点,数据显示,RANB对疾病的总体诊断率为79.3%,对恶性肿瘤的诊断率为88% [27] 。RANB手术需要全身麻醉和气管插管以便稳定机器人导管的插入,这限制了可使用该项检查方法的患者范围。

总的来说,导航支气管镜是一种安全的手术,具有高诊断率的潜力。在与电磁导航、CBCT、机器人辅助以及虚拟图像导航等结合后,在不同的亚组分析的情况下拥有不同的优点,部分可较单用支气管镜提高肺癌的诊断率,但临床医生仍需在衡量其获益与局限性如成本等之后为患者选择合适的检查方式。

4. 液体活检(Liquid Biopsy)

由于组织活检是创伤性的,且患者对于多次组织活检的依从性较差,液体活检已成为研究的热门方向。液体活检的优势在于无创伤、取材方便、实时监测、可揭示肿瘤的特征和灵敏度高。

4.1. 循环肿瘤细胞(Circulating Tumor Cells, CTCs)

1869年,澳大利亚病理学家Thomas Ashworth 首次报道了CTCs,它是指从原发性或转移性病变中自发脱落或通过诊断或治疗手术进入外周血的肿瘤细胞。少数肿瘤细胞可能逃避凋亡/吞噬,经历上皮间充质转化(epithelial mesenchymal transformation, EMT),从而获得更强的流动性、侵袭性,增强粘附和穿透血管壁的能力,导致远处转移。因此,高CTC数量可能与侵袭性、转移增加和复发时间减少相关 [28] 。有实验证明,对CTCs的总数量进行计数可能有助于以较高的灵敏度识别恶性结节,而对四倍体CTCs进行专门量化则显示出识别恶性结节的较高特异性 [29] 。虽然CTCs的难以准确检测在很大程度上限制了液体活检的临床应用 [30] ,但最近新兴的CTCs富集和分离技术,如基于微流体的技术和基于纳米技术的技术,极大地促进了CTCs检测的发展 [31] 。

4.2. 循环肿瘤DNA (Circulating Tumor DNA, ctDNA)

ctDNA是由凋亡或坏死的肿瘤细胞释放的小核酸,是编码肿瘤细胞的基因 [32] 。有研究数据表明当其利用甲基化ctDNA区分恶性肿瘤患者和良性病变患者,灵敏度为79.5%,特异度为85.2% [33] 。研究发现,ctDNA水平高的患者的总生存期和无进展生存期明显短于ctDNA水平低的患者。ctDNA高于基线提示预后不良 [34] 。在肺癌患者的ctDNA中可以发现基因突变、杂合性缺失、微卫星不稳定、基因甲基化等基因变化。因此,ctDNA分析在早期诊断和预后方面具有较高的价值 [35] 。

4.3. 外泌体(Exosomes)

外泌体广泛分布于唾液、血液、支气管肺泡灌洗液、痰液等体液中,可参与肿瘤发生发展中的血管生成、上皮间充质转化、侵袭转移、免疫逃逸、耐药等方面。有研究数据显示腺癌组的外泌体水平(平均2.85 mg/mL)高于对照组(平均0.77 mg/mL) [36] ,提示外泌体可能具有诊断肺癌的潜力。外泌体作为一种很有前景的癌症诊断生物标记物,在癌症液体活检中备受关注,但其临床局限性也受到外泌体的丰富程度、分离仪器和纯度等因素的影响 [37] 。因此应建立严格的外泌体分离、鉴定和分析的标准化方案,确保外泌体分析的重现性和可靠性,来实现外泌体在临床实践中对癌症检测的潜力转化。

4.4. 微小核糖核酸(microRNA, miRNA)

miRNA是一种内源性、非编码RNA,因其可通过调控细胞周期、转移、血管生成、代谢和凋亡在肿瘤发生过程中发挥突出作用而引起人们的关注。Zhao Z等人的研究 [38] 证明在SCLC细胞和人SCLC肿瘤组织中,miRNA-25-3p均过表达。H510A细胞中miR-25的下调显着降低了癌细胞的生长、侵袭能力和对顺铂的耐药性。Cui R等人在实验中 [39] 发现microRNA-224在NSCLC组织中显着上调,特别是在切除的NSCLC转移中。miR-224表达增加通过直接靶向肿瘤抑制因子TNFα诱导蛋白1 (TNFα-induced protein 1, TNFAIP1)和SMAD蛋白4 (drosophila mothers against decapentaplegic protein 4, SMAD4)来促进细胞迁移、侵袭和增殖。Edmonds MD等人的实验 [40] 证明miR-31调节肺上皮细胞生长,随后形成腺瘤,最后发展为腺癌。以上实验证明多种miRNA的异常表达都可帮助确诊肺癌,但是不同miRNA之间无统一的制备方法及标准,目前难以直接在临床阶段运用。选择在诊断肺癌上特异性及敏感性都更好的miRNA作为标志物并统一制备方法及标准,有利于进一步实现miRNA作为肺癌标志物在临床得到运用。

4.5. 肿瘤诱导血小板(Tumor-Educated Platelets, TEPs)

在癌症存在期间,血小板会对驻留在肿瘤中的癌细胞以及进入血液的癌细胞产生影响。血小板通过向肿瘤提供多种促血管生成因子(如血管内皮生长因子等),并通过刺激这些因子的表达,创造一个有利于血管新生的环境 [41] 。因此,血小板是肿瘤微环境的一个基本组成部分,并被认为是癌症生物学的一个重要方面。TEPs是一种肿瘤细胞,它将肿瘤相关分子转移到血小板上,并改变其RNA和蛋白质成为TEPS,TEPS参与了多种实体肿瘤的进展和融合 [42] 。Ferdinando P在Kras驱动的肺腺癌遗传小鼠模型中 [43] 发现,过度产生的、经过设计的 PF4 扩大了骨髓中的巨核细胞生成,增加了肺中的血小板积聚,加速了新生腺癌的发生。Xing S的实验 [44] 发现,NSCLC患者的血小板ITGA2B水平显著高于所有对照组,可以认为TEP ITGA2B是一种很有前途的标志物,可改善I期NSCLC患者的识别并区分恶性肺结节和良性肺结节。TEPs作为非侵入性的检验手段,潜在地增强了早期癌症的检测。

5. 总结

无论是影像学检查、支气管镜检查还是液体活检,用于肺癌早期检查都既有其优点,也有许多限制,且由于这些检查的自身局限性如辐射暴露、假阳性率高、费用昂贵、过度诊断、设备受限、缺乏统一诊断标准等而不能有效实现肺癌的早诊早治。其中,液体活检是近年来肺癌诊断的热点。液体活检虽然目前难以统一制备方法及诊断标准,但它的无创性及实时性使其具有巨大潜力。进一步发展先进的分子生物学检测方法,是实现液体活检由研究到临床转变的关键点之一。目前临床仍需要进一步研究、探索灵敏度及特异度更高的肺癌早期诊断方法,以降低肺癌死亡率,改善肺癌患者的生存预后。

NOTES

*通讯作者。

参考文献

[1] Siegel, R.L., Miller, K.D., Fuchs, H.E., et al. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33.
https://doi.org/10.3322/caac.21708
[2] Han, B., Zheng, R., Zeng, H., et al. (2024) Cancer Incidence and Mortality in China, 2022. Journal of the National Cancer Center, 4, 47-53.
https://doi.org/10.1016/j.jncc.2024.01.006
[3] Mattiuzzi, C. and Lippi, G. (2019) Current Cancer Epidemiology. Journal of Epidemiology and Global Health, 9, 217-222.
https://doi.org/10.2991/jegh.k.191008.001
[4] Akin, O., Brennan, S.B., Dershaw, D.D., et al. (2012) Advances in Oncologic Imaging: Update on 5 Common Cancers. CA: A Cancer Journal for Clinicians, 62, 364-393.
https://doi.org/10.3322/caac.21156
[5] Frost, J.K., Ball, W.C., et al. (1984) Early Lung Cancer Detection: Results of the Initial (Prevalence) Radiologic and Cytologic Screening in the Johns Hopkins Study. American Review of Respiratory Disease, 130, 549-554.
[6] Van Der Aalst, C.M., Ten Haaf, K. and De Koning, H.J. (2016) Lung Cancer Screening: Latest Developments and Unanswered Questions. The Lancet Respiratory Medicine, 4, 749-761.
https://doi.org/10.1016/S2213-2600(16)30200-4
[7] Kubík, A. and Polák, J. (1986) Lung Cancer Detection Results of a Randomized Prospective Study in Czechoslovakia. Cancer, 57, 2427-2437.
https://doi.org/10.1002/1097-0142(19860615)57:12<2427::AID-CNCR2820571230>3.0.CO;2-M
[8] Bradley, S.H., Abraham, S., Callister, M.E., et al. (2019) Sensitivity of Chest X-Ray for Detecting Lung Cancer in People Presenting with Symptoms: A Systematic Review. British Journal of General Practice, 69, E827-E835.
https://doi.org/10.3399/bjgp19X706853
[9] The National Lung Screening Trial Research Team (2011) Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. New England Journal of Medicine, 365, 395-409.
https://doi.org/10.1056/NEJMoa1102873
[10] Brenner, D.J. (2004) Radiation Risks Potentially Associated with Low-Dose CT Screening of Adult Smokers for Lung Cancer. Radiology, 231, 440-445.
https://doi.org/10.1148/radiol.2312030880
[11] Ohno, Y. (2014) New Applications of Magnetic Resonance Imaging for Thoracic Oncology. Seminars in Respiratory and Critical Care Medicine, 35, 27-40.
https://doi.org/10.1055/s-0033-1363449
[12] Sommer, G., Tremper, J., Koenigkam-Santos, M., et al. (2014) Lung Nodule Detection in a High-Risk Population: Comparison of Magnetic Resonance Imaging and Low-Dose Computed Tomography. European Journal of Radiology, 83, 600-605.
https://doi.org/10.1016/j.ejrad.2013.11.012
[13] Wang, Y.X, J., Lo, G.G., Yuan, J., et al. (2014) Magnetic Resonance Imaging for Lung Cancer Screen. Journal of Thoracic Disease, 6, 1340-1348.
[14] Lam, S., Macaulay, C., Hung, J., et al. (1993) Detection of Dysplasia and Carcinoma in Situ with a Lung Imaging Fluorescence Endoscope Device. The Journal of Thoracic and Cardiovascular Surgery, 105, 1035-1040.
https://doi.org/10.1016/S0022-5223(19)33775-4
[15] Escarguel, B., D’Amore, D., Chapel, F., et al. (2009) [Early Diagnosis of Lung Cancer: Impact of Autofluorescence Bronchoscopy]. Revue De Pneumologie Clinique, 65, 287-291.
https://doi.org/10.1016/j.pneumo.2009.04.005
[16] Moghissi, K., Dixon, K. and Stringer, M.R. (2008) Current Indications and Future Perspective of Fluorescence Bronchoscopy: A Review Study. Photodiagnosis and Photodynamic Therapy, 5, 238-246.
https://doi.org/10.1016/j.pdpdt.2009.01.008
[17] Gu, P., Zhao, Y.Z., Jiang, L.Y., et al. (2009) Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration for Staging of Lung Cancer: A Systematic Review and Meta-Analysis. European Journal of Cancer, 45, 1389-1396.
https://doi.org/10.1016/j.ejca.2008.11.043
[18] Navani, N., Nankivell, M., Lawrence, D.R., et al. (2015) Lung Cancer Diagnosis and Staging with Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration Compared with Conventional Approaches: An Open-Label, Pragmatic, Randomised Controlled Trial. The Lancet Respiratory Medicine, 3, 282-289.
https://doi.org/10.1016/S2213-2600(15)00029-6
[19] Fu, C., Liu, Z., Zhu, F., et al. (2016) A Meta-Analysis: Is Low-Dose Computed Tomography a Superior Method for Risky Lung Cancers Screening Population? The Clinical Respiratory Journal, 10, 333-341.
https://doi.org/10.1111/crj.12222
[20] Ost, D.E., Ernst, A., Lei, X., et al. (2016) Diagnostic Yield and Complications of Bronchoscopy for Peripheral Lung Lesions. Results of the AQuIRE Registry. American Journal of Respiratory and Critical Care Medicine, 193, 68-77.
https://doi.org/10.1164/rccm.201507-1332OC
[21] Rivera, M.P., Mehta, A.C. and Wahidi, M.M. (2013) Establishing the Diagnosis of Lung Cancer. Chest, 143, E142S-E165S.
https://doi.org/10.1378/chest.12-2353
[22] Asano, F., Shinagawa, N., Ishida, T., et al. (2013) Virtual Bronchoscopic Navigation Combined with Ultrathin Bronchoscopy. A Randomized Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 188, 327-333.
https://doi.org/10.1164/rccm.201211-2104OC
[23] Folch, E.E., Pritchett, M.A., Nead, M.A., et al. (2019) Electromagnetic Navigation Bronchoscopy for Peripheral Pulmonary Lesions: One-Year Results of the Prospective, Multicenter NAVIGATE Study. Journal of Thoracic Oncology, 14, 445-458.
https://doi.org/10.1016/j.jtho.2018.11.013
[24] Folch, E.E., Bowling, M.R., Pritchett, M.A., et al. (2022) NAVIGATE 24-Month Results: Electromagnetic Navigation Bronchoscopy for Pulmonary Lesions at 37 Centers in Europe and the United States. Journal of Thoracic Oncology, 17, 519-531.
https://doi.org/10.1016/j.jtho.2021.12.008
[25] Casal, R.F., Sarkiss, M., Jones, A.K., et al. (2018) Cone Beam Computed Tomography-Guided Thin/Ultrathin Bronchoscopy for Diagnosis of Peripheral Lung Nodules: A Prospective Pilot Study. Journal of Thoracic Disease, 10, 6950-6959.
https://doi.org/10.21037/jtd.2018.11.21
[26] Kawakita, N., Takizawa, H., Toba, H., et al. (2021) Cone-Beam Computed Tomography versus Computed Tomography-Guided Ultrathin Bronchoscopic Diagnosis for Peripheral Pulmonary Lesions: A Propensity Score-Matched Analysis. Respirology, 26, 477-484.
https://doi.org/10.1111/resp.14016
[27] Fielding, D.I, K., Bashirzadeh, F., Son, J.H., et al. (2019) First Human Use of a New Robotic-Assisted Fiber Optic Sensing Navigation System for Small Peripheral Pulmonary Nodules. Respiration, 98, 142-150.
https://doi.org/10.1159/000498951
[28] Chaffer, C.L. and Weinberg, R.A. (2011) A Perspective on Cancer Cell Metastasis. Science, 331, 1559-1564.
https://doi.org/10.1126/science.1203543
[29] Lei, Y., Sun, N., Zhang, G., et al. (2020) Combined Detection of Aneuploid Circulating Tumor-Derived Endothelial Cells and Circulating Tumor Cells May Improve Diagnosis of Early Stage Non-Small-Cell Lung Cancer. Clinical and Translational Medicine, 10, e128.
https://doi.org/10.1002/ctm2.128
[30] Bünger, S., Zimmermann, M. and Habermann, J.K. (2015) Diversity of Assessing Circulating Tumor Cells (CTCs) Emphasizes Need for Standardization: A CTC Guide to Design and Report Trials. Cancer and Metastasis Reviews, 34, 527-545.
https://doi.org/10.1007/s10555-015-9582-0
[31] Lin, D., Shen, L., Luo, M., et al. (2021) Circulating Tumor Cells: Biology and Clinical Significance. Signal Transduction and Targeted Therapy, 6, Article No. 404.
https://doi.org/10.1038/s41392-021-00817-8
[32] Kumaki, Y., Olsen, S., Suenaga, M., et al. (2021) Comprehensive Genomic Profiling of Circulating Cell-Free DNA Distinguishes Focal MET Amplification from Aneuploidy in Diverse Advanced Cancers. Current Oncology, 28, 3717-3728.
https://doi.org/10.3390/curroncol28050317
[33] Liang, W., Zhao, Y., Huang, W., et al. (2019) Non-Invasive Diagnosis of Early-Stage Lung Cancer Using High-Throughput Targeted DNA Methylation Sequencing of Circulating Tumor DNA (CtDNA). Theranostics, 9, 2056-2070.
https://doi.org/10.7150/thno.28119
[34] The Tracerx Consortium, the Peace Consortium, Abbosh, C., et al. (2017) Phylogenetic CtDNA Analysis Depicts Early-Stage Lung Cancer Evolution. Nature, 545, 446-451.
https://doi.org/10.1038/nature22364
[35] Chabon, J.J., Hamilton, E.G., Kurtz, D.M., et al. (2020) Integrating Genomic Features for Non-Invasive Early Lung Cancer Detection. Nature, 580, 245-251.
https://doi.org/10.1038/s41586-020-2140-0
[36] Rabinowits, G., Gerçel-Taylor, C., Day, J.M., et al. (2009) Exosomal MicroRNA: A Diagnostic Marker for Lung Cancer. Clinical Lung Cancer, 10, 42-46.
https://doi.org/10.3816/CLC.2009.n.006
[37] Jiang, C., Zhang, N., Hu, X., et al. (2021) Tumor-Associated Exosomes Promote Lung Cancer Metastasis through Multiple Mechanisms. Molecular Cancer, 20, Article No. 117.
https://doi.org/10.1186/s12943-021-01411-w
[38] Zhao, Z., Liu, J., Wang, C., et al. (2014) MicroRNA-25 Regulates Small Cell Lung Cancer Cell Development and Cell Cycle through Cyclin E2. International Journal of Clinical and Experimental Pathology, 7, 7726-7734.
[39] Cui, R., Meng, W., Sun, H.L., et al. (2015) MicroRNA-224 Promotes Tumor Progression in Nonsmall Cell Lung Cancer. Proceedings of the National Academy of Sciences of the United States of America, 112, E4288-E4297.
https://pnas.org/doi/full/10.1073/pnas.1502068112
https://doi.org/10.1073/pnas.1502068112
[40] Edmonds, M.D., Boyd, K.L., Moyo, T., et al. (2015) MicroRNA-31 Initiates Lung Tumorigenesis and Promotes Mutant KRAS-Driven Lung Cancer. Journal of Clinical Investigation, 126, 349-364.
https://doi.org/10.1172/JCI82720
[41] Janowska-Wieczorek, A., Wysoczynski, M., Kijowski, J., et al. (2005) Microvesicles Derived from Activated Platelets Induce Metastasis and Angiogenesis in Lung Cancer. International Journal of Cancer, 113, 752-760.
https://doi.org/10.1002/ijc.20657
[42] Bushman, F.D., Cantu, A., Everett, J., et al. (2021) Challenges in Estimating Numbers of Vectors Integrated in Gene-Modified Cells Using DNA Sequence Information. Molecular Therapy, 29, 3328-3331.
https://doi.org/10.1016/j.ymthe.2021.10.022
[43] Pucci, F., Rickelt, S., Newton, A.P., et al. (2016) PF4 Promotes Platelet Production and Lung Cancer Growth. Cell Reports, 17, 1764-1772.
https://doi.org/10.1016/j.celrep.2016.10.031
[44] Xing, S., Zeng, T., Xue, N., et al. (2019) Development and Validation of Tumor-Educated Blood Platelets Integrin α 2b (ITGA2B) RNA for Diagnosis and Prognosis of Non-Small-Cell Lung Cancer through RNA-Seq. International Journal of Biological Sciences, 15, 1977-1992.
https://doi.org/10.7150/ijbs.36284