脂代谢紊乱在儿童呼吸道合胞病毒感染所致气道炎症中的研究进展
Research Progress on Lipid Metabolism Disorders in Airway Inflammation Caused by Respiratory Syncytial Virus Infection in Children
DOI: 10.12677/acm.2024.1451396, PDF, HTML, XML, 下载: 65  浏览: 97 
作者: 仵晓钰, 刘恩梅, 谢 军*:重庆医科大学附属儿童医院呼吸科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿科学重庆市重点实验室,重庆
关键词: 呼吸道合胞病毒气道炎症儿童脂代谢Respiratory Syncytial Virus Airway Inflammation Children Lipid Metabolism
摘要: 呼吸道合胞病毒是世界范围内引起5岁以下儿童急性下呼吸道感染最重要的病毒病原体。生命早期重症RSV感染与后期反复喘息、肺功能异常以及哮喘的发生密切相关,但机制并不清楚。已有研究显示RSV感染引起脂质代谢紊乱可能参与气道炎症,进而影响喘息的发生或加重疾病严重程度。基于此,本文对RSV感染后脂代谢与气道炎症的关系进行综述。
Abstract: Respiratory syncytial virus (RSV) is the predominant viral pathogen responsible for acute lower respiratory tract infections in children under the age of five globally. Severe RSV infections in early childhood are closely linked to subsequent recurrent wheezing, lung function abnormalities, and the development of asthma, although the precise mechanisms remain incompletely understood. Existing studies suggest that lipid metabolism disorders triggered by RSV infection might contribute to airway inflammation, potentially influencing the onset of wheezing or exacerbating disease severity. Therefore, this article examines the correlation between lipid metabolism and airway inflammation following RSV infection.
文章引用:仵晓钰, 刘恩梅, 谢军. 脂代谢紊乱在儿童呼吸道合胞病毒感染所致气道炎症中的研究进展[J]. 临床医学进展, 2024, 14(5): 61-67. https://doi.org/10.12677/acm.2024.1451396

1. 引言

急性下呼吸道感染(Acute Lower Respiratory Infection, ALRI)是儿童住院的主要原因,呼吸道合胞病毒(Respiratory Syncytial Virus, RSV)是婴幼儿中最常见的病毒病原,RSV感染在全世界引起显著的发病率和死亡率 [1] 。最新疾病负担指出5岁以下儿童中,3300万例感染RSV,360万例呼吸道合胞病毒感染住院(Respiratory Syncytial Virus Hospitalization, RSVH),6个月以下的婴儿是RSV感染的易感人群 [2] ,在0~6个月的婴儿中,估计有660万例RSV感染,140万例RSVH。

生命早期重症RSV感染与后期反复喘息、肺功能异常以及哮喘的发生密切相关,但机制并不清楚。RSV感染机体后,会使气道发生水肿、坏死、脱落以及分泌物增多,导致肺通气和换气功能均发生障碍,进而诱发喘息甚至喘憋等严重症状 [3] 。有资料显示呼吸道合胞病毒感染的毛细支气管炎患儿在儿童期易患哮喘,且呼吸道合胞病毒感染也是哮喘发生的独立而重要的高危因素 [4] 。脂质不仅是细胞重要的信号分子,还参与调节诸多重要的生命活动,包括物质运输、结构支持、能量转换、细胞发育、分化和凋亡等。脂质组学是代谢组学的一门新兴分支学科。通过比较不同生理状态下脂质代谢网络的变化,进而识别代谢调控中关键的生物标志物,最终揭示脂质在各种生命活动中的作用机制。脂质组学能揭示与RSV感染相关的脂类变化,找到异常的代谢通路,识别脂类生物标志物,对疾病的早期诊断、病情发展和治疗靶点的发现等方面展现出广泛的应用前景。已有研究显示RSV感染引起脂质代谢紊乱可能参与气道炎症,进而导致反复喘息甚至哮喘的发生或加重疾病严重程度。研究RSV感染后脂代谢的改变与疾病特征的相关性,有望对RSV感染患儿的防治提供新的思路。

2. RSV感染后血脂水平的变化情况

脂肪酸是可分为短链、中链、长链或超长链脂肪酸。不含双键的脂肪酸称为饱和脂肪酸,具有一个或多个双链脂肪酸的称为单不饱和脂肪酸或多不饱和脂肪酸。长链脂肪酸,是促炎介质的主要来源,而细胞内脂滴是长链脂肪酸的主要来源,也是最重要的血脂的类型。研究显示RSV感染小鼠血浆以及肺组织中有多种脂质水平出现变化,这些血脂的改变可能参与了RSV的致病过程 [5] 。呼吸道合胞病毒感染时炎症细胞促进磷脂酶A2分解磷脂酰甘油,从而造成甘油磷脂的降低 [6] [7] 。非重症肺炎儿童入院时的高密度脂蛋白、低密度脂蛋白及甘油三酯水平较比出院时有明显的降低;重症肺炎组与非重症肺炎组比较HDL-C、LDL-C水平明显下降 [8] 。呼吸道病毒与毛细支气管炎住院婴儿的血清代谢相关,如二十三烷酰鞘磷脂与3岁时复发性喘息显著相关,1-硬脂酰-2-亚油酰-GPC与住院期间使用正压通气风险显著相关 [9] 。以上研究提示RSV感染后能引起儿童血脂的变化,这些变化可能预示着疾病严重程度或远期预后。

3. RSV感染与脂代谢的相互作用

宿主细胞的脂质成分对病毒的进入、附着、复制、组装产生重要影响,同时病毒感染也会显著影响宿主的脂质代谢水平 [10] 。一方面,宿主脂质代谢水平会对RSV感染产生重要影响。RSV融合蛋白F对病毒融合必不可少,其以脂筏为靶标,而不需要其他任何病毒蛋白辅助 [11] 。直接抑制细胞脂肪酸合成酶会抑制呼吸道合胞病毒和其他呼吸道病毒的复制 [12] 。磷脂酰甘油(phosphatidylglycerol, PG)作用于TLR-4信号通路,阻断呼吸道合胞病毒黏附到上皮细胞 [13] ,但PG发挥的有效时间窗口短暂,只能短期预防病毒感染 [14] 。孕期母亲高脂高热量饮食(HFD)导致后代持续代谢和呼吸异常 [15] 。对HFD母鼠出生的新生儿肺组织的细胞因子表达分析揭示了强烈的促炎模式。HFD母鼠分娩的幼崽在感染呼吸道合胞病毒后容易患上更严重的疾病。

另一方面,RSV感染也会影响宿主脂质代谢水平。有研究检测了不同呼吸道病毒感染患儿血浆中600多种代谢物质的水平,发现RSV感染患儿血浆中有30种主要涉及脂质途径的代谢物显著变化 [10] 。RSV感染后炎性细胞因子和蛋白可抑制ATP结合膜盒转运蛋白A1(ABCA1),从而抑制胆固醇逆向转运,影响脂质代谢 [16] 。如RSV感染后中性粒细胞可上调肿瘤坏死因子 [17] ,作为最重要的炎性细胞因子之一,肿瘤坏死因子-α通过NF-κB依赖的途径下调Thp-1巨噬细胞源性泡沫细胞ABCA1的表达 [18] ;RSV感染后激活肥大细胞使其释放干扰素-γ,干扰素-γ通过抑制ABCA1的转录调节因子LxR-α而下调ABCA1的表达 [19] ,这与干扰素-γ作用于巨噬细胞源性泡沫细胞后STAT1的磷酸化和核转位从而下调ABCA1mRNA是一致的 [20] 。RSV感染通过促进脂质分散和利用,加重氧化损伤和炎性因子分泌,从而导致气道高反应性的进展 [21] 。

4. RSV感染后脂质代谢紊乱与气道炎症的发生发展

血脂代谢异常可能会通过激活先天免疫和适应性免疫,放大呼吸道炎症级联反应,进而增加气道炎症和高反应性。研究显示RSV感染后Th2类细胞因子的产生和持续存在与哮喘的发生密切相关。近期研究也发现RSV感染小鼠急性期以Th1类细胞因子升高为主,而后期则以II类细胞因子(IL-4,IL-5,IL-13,TSLP等)升高为主,小鼠气道炎症可持续2月以上 [22] [23] 。代谢组学研究发现,哮喘患者体内能量以及脂类等代谢通路会发生明显的变化 [24] 。气道平滑肌胆固醇紊乱和磷脂转运的失常可能在哮喘的发病机制中起着重要作用 [25] 。研究显示类花生酸脂质介质包括前列腺素和白三烯参与炎症反应的多个过程。前列腺素PGD2和白三烯CysLTs可促进外周血单核细胞IL-4,IL-5,IL-13的释放,促进固有淋巴细胞ILC2的活化。而脂氧素LXA4和前列环素PGI2则抑制IL-4,IL-5,IL-13的产生及II类细胞的活化 [26] 。RSV感染后脂质代谢紊乱可能促进气道炎症的发生发展,导致反复喘息甚至哮喘的发生,主要涉及以下几种脂质:长链脂肪酸、甘油三酯、花生四烯酸、磷脂酰甘油、前列腺素、总胆固醇等。

4.1. 长链脂肪酸

研究表明,长链多不饱和脂肪酸的高脂肪饮食会增加炎症性疾病的风险,如类风湿性关节炎、炎症性肠病和哮喘 [27] 。小鼠体内实验显示RSV感染后第28天肺组织中长链脂肪酸水平明显增高,且介导了气道炎症及高反应性 [4] 。此外长链脂肪酸可以诱导氧化应激,导致更高水平的活性氧(ROS)以及更低水平的过氧化氢酶 [28] 。小鼠实验显示RSV感染后脂肪酸氧化和游离脂肪酸释放增加,导致促炎细胞因子IL-1、IL-2、IL-4和IL-6升高。RSV感染上皮细胞持续释放的长链脂肪酸促进Th2反应,从而进一步诱发Th1/Th2失衡。

4.2. 甘油三酯、花生四烯酸

研究显示RSV感染及甘油三酯的水平与患儿早期喘息密切相关 [29] 。脂滴中的甘油三酯在脂肪酶的作用下水解为花生四烯酸(Arachidonic Acid, AA),而AA广泛参与哮喘过程 [30] 。长链多不饱和脂肪酸的衍生物花生四烯酸是最常见的炎症因子前体物质,可以通过环氧化酶、脂氧合酶和环氧合酶三个主要酶系合成前列腺素、血栓烷、羟基二十碳四烯酸和环氧二十碳三烯酸等,他们在哮喘中具有重要作用。

4.3. 磷脂酰甘油

磷脂酰甘油是肺表面活性剂的重要成分,与先天免疫防御有关,它可以通过Toll样受体4、CD14和MD2途径抑制脂多糖诱导的炎症因子的产生 [31] [32] ,具有减轻A型流感病毒、呼吸道合胞病毒 [13] 、支原体感染的作用,减少感染诱发的哮喘急性发作。

4.4. 前列腺素类

大部分前列腺素类(prostaglandins, PGs)具有促炎症反应的特性,但PGE2,PGI2却存在有抗炎效应 [33] 。PGE2在肺组织中含量丰富,具有支气管扩张效应,能抑制过敏原或其他病原引起的支气管收缩狭窄,还可诱导组织维修和肺血管重塑 [34] 。Fritscher L G等 [35] 采用串联质谱法定量分析了哮喘和慢性阻塞性肺病(chronic obstructive pulmonary disease, COPD) EBC中的25种脂质介质,发现中度至重度哮喘和COPD患者体内PGE2等5种脂质显著升高,LXA4等4种脂质显著降低。Zaslona Z等 [36] 通过实验推断PGE2主要作用于T细胞上的EP2 受体来抑制过敏性哮喘的炎症反应,这提供了一个潜在的治疗哮喘的靶点。研究显示RSV感染气道上皮细胞中PGE2产生明显增加,伴随着COX-2表达增高。抑制PGE2的产生降低的病毒复制及炎症反应 [37] 。

4.5. 总胆固醇

除男性、家庭喘息、年龄、湿疹、RSV感染、出生体重和TC外,体重快速增长是早期喘息婴儿应关注的危险因素。实验结果表明,血清总胆固醇(TC) (P = 0.018)和年龄别体重Z值(ΔWAZ) (P = 0.023)与RSV或其他病毒感染后喘息天数呈正相关 [38] 。

5. 调控脂代谢影响RSV感染引起的炎症反应

研究显示,肺表面活性物质磷脂酰甘油抑制呼吸道合胞病毒引起的炎症和感染 [32] 。肺表面活性磷脂棕榈酰–油酰–磷脂酰甘油(POPG)可以通过与Toll样受体4 (TLR4)相互作用蛋白CD14和MD-2的直接相互作用显著减弱脂多糖诱导的炎症反应。用POPG处理支气管上皮细胞可显着抑制白细胞介素-6和-8的产生,以及RSV诱导的细胞病变效应。磷脂以高亲和力结合RSV,并抑制病毒与HEp2细胞的结合。POPG在体外阻止病毒斑块形成4个对数单位,并显着抑制病毒预感染细胞的斑块扩展。在病毒感染的同时对小鼠施用POPG,在感染后3天和5天几乎完全消除了肺部病毒的恢复,并消除了IFN-γ的产生和表面活性蛋白D (SP)的增强表达。这些发现证明了使用特定表面活性磷脂的外源性给药可以预防和治疗RSV感染。

短链脂肪酸乙酸酯在患有呼吸道合胞病毒性细支气管炎的婴儿细胞中触发由RIG-I介导的抗病毒反应 [39] 。用SCFA-乙酸盐对A549细胞进行体外预处理可减少临床分离株的RSV感染并增加RIG-I和ISG15的表达。用SCFA-醋酸盐鼻内治疗的动物恢复得更快,RSV临床分离病毒载量减少,IFNB1和RIG-I的肺表达增加。在RIG-I敲除A549细胞中进行的实验表明,保护依赖于RIG-I的存在。肠道微生物谱与毛细支气管炎的严重程度和粪便中的醋酸盐有关。增加的SCFA-乙酸盐水平与入院时增加的氧饱和度和较短的发热持续时间有关。SCFA乙酸盐离体处理患者的呼吸细胞能通过调节RIG-I表达降低RSV感染的严重程度和RSV病毒载量。

出生时二十二碳五烯酸(DPA, 22: 5n-3)比例较高与呼吸道合胞病毒感染风险降低有关 [40] 。脂肪醇和脂质对RSV和副流感病毒的显着杀病毒活性在体外研究中得到证实 [41] ,这引发了使用此类化合物作为药物剂型成分的可行性问题,以对抗由这些病毒以及可能的其他副粘病毒和副流感病毒引起的呼吸道感染。

6. 总结与展望

RSV感染后脂代谢存在紊乱且与炎症的发生发展密切相关,RSV感染可能通过影响脂代谢,并进一步促进Th2类细胞因子的产生和分泌,导致RSV感染后反复喘息甚至哮喘的发生。因此,对RSV感染后脂代谢紊乱的深入研究及调控可能为临床治疗RSV感染导致反复喘息提供新的干预靶点。

NOTES

*通讯作者。

参考文献

[1] Hu, M., Bogoyevitch, M.A. and Jans, D.A. (2020) Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiological Reviews, 100, 1527-1594.
https://doi.org/10.1152/physrev.00030.2019
[2] Li, Y., Wang, X., Blau, D.M., et al. (2022) Global, Regional, and National Disease Burden Estimates of Acute Lower Respiratory Infections Due to Respiratory Syncytial Virus in Children Younger than 5 Years in 2019: A Systematic Analysis. The Lancet, 399, 2047-2064.
https://doi.org/10.1016/S0140-6736(22)00478-0
[3] Mohapatra, S.S. and Boyapalle, S. (2008) Epidemiologic, Experimental, and Clinical Links between Respiratory Syncytial Virus Infection and Asthma. Clinical Microbiology Reviews, 21, 495-504.
https://doi.org/10.1128/CMR.00054-07
[4] 朱丽丽, 李昌崇. 毛细支气管炎演变为哮喘的相关因素研究[J]. 国际儿科学杂志, 2012, 39(3): 298-300, 303.
[5] Lin, L., An, L., Chen, H., et al. (2021) Integrated Network Pharmacology and Lipidomics to Reveal The Inhibitory Effect of Qingfei Oral Liquid on Excessive Autophagy in RSV-Induced Lung Inflammation. Frontiers in Pharmacology, 12, Article ID: 777689.
https://doi.org/10.3389/fphar.2021.777689
[6] 马铭欣. 呼吸道合胞病毒感染的代谢组学研究进展[J]. 国际儿科学杂志, 2018, 45(5): 349-351.
[7] Asai, A., Okajima, F., Nakajima, Y., et al. (2011) Involvement of Rac GTPase Activation in Phosphatidylcholine Hydroperoxide-Induced THP-1 Cell Adhesion to ICAM-1. Biochemical and Biophysical Research Communications, 406, 273-277.
https://doi.org/10.1016/j.bbrc.2011.02.032
[8] 金晓盛, 吴厉锋, 钱小英, 等. 血脂在下呼吸道感染患者中的临床意义[J]. 温州医学院学报, 2013, 43(9): 607-609.
[9] Fujiogi, M., Camargo, C.A., Raita, Y., et al. (2020) Respiratory Viruses Are Associated with Serum Metabolome among Infants Hospitalized for Bronchiolitis: A Multicenter Study. Pediatric Allergy and Immunology, 31, 755-766.
https://doi.org/10.1111/pai.13296
[10] Chan, R.B., Tanner, L., Wenk, M.R., et al. (2010) Implications for Lipids during Replication of Enveloped Viruses. Chemistry and Physics of Lipids, 163, 449-459.
https://doi.org/10.1016/j.chemphyslip.2010.03.002
[11] Fleming, E.H., Kolokoltsov, A.A., Davey, R.A., et al. (2006) Respiratory Syncytial Virus F Envelope Protein Associates with Lipid Rafts without a Requirement for Other Virus Proteins. Journal of Virology, 80, 12160-12170.
https://doi.org/10.1128/JVI.00643-06
[12] Ohol, Y.M., Wang, Z., Kemble, G., et al. (2015) Direct Inhibition of Cellular Fatty Acid Synthase Impairs Replication of Respiratory Syncytial Virus and Other Respiratory Viruses. PLOS ONE, 10, e0144648.
https://doi.org/10.1371/journal.pone.0144648
[13] Numata, M., Chu, H.W., Dakhama, A., et al. (2010) Pulmonary Surfactant Phosphatidylglycerol Inhibits Respiratory Syncytial Virus-Induced Inflammation and Infection. Proceedings of the National Academy of Sciences, 107, 320-325.
https://doi.org/10.1073/pnas.0909361107
[14] Numata, M, Nagashima, Y., Moore, M.L., et al. (2013) Phosphatidylglycerol Provides Short-Term Rophylaxis against Respiratory Syncytial Virus Infection. Journal of Lipid Research, 54, 2133-2143.
https://doi.org/10.1194/jlr.M037077
[15] Griffiths, P.S., Walton, C., Samsell, L., et al. (2016) Maternal High-Fat Hypercaloric Diet during Pregnancy Results in Persistent Metabolic and Respiratory Abnormalities in Offspring. Pediatric Research, 79, 278-286.
https://doi.org/10.1038/pr.2015.226
[16] Yin, K., Liao, D.F., Tang, C.K., et al. (2010) ATP-Binding Membrane Cassette Transporter A1 (ABCA1): A Possible Link between Inflammation and Reverse Cholesterol Transport. Molecular Medicine, 16, 438-449.
https://doi.org/10.2119/molmed.2010.00004
[17] Stokes, K.L., Currier, M.G., Sakamoto, K., et al. (2013) The Respiratory Syncytial Virus Fusion Protein and Neutrophils Mediate the Airway Mucin Response to Pathogenic Respiratory Syncytial Virus Infection. Journal of Virology, 87, 10070-10082.
https://doi.org/10.1128/JVI.01347-13
[18] Villarreal-Molina, M.T., Aguilar-Salinas, C.A., Rodriguez-Cruz, M., et al. (2007) The ATP-Binding Cassette Transporter A1R230C Variant Affects HDL Cholesterol Levels and BMI in The Mexican Population: Association with Obesity and Obesity-Related Comorbidities. Diabetes, 56, 1881-1887.
https://doi.org/10.2337/db06-0905
[19] Jacobo-Albavera, L., Domínguez-Pérez, M., Medina-Leyte, D.J., et al. (2021) The Role of the ATP Binding Cassette A1 (ABCA1) in Human Disease. International Journal of Molecular Sciences, 22, Article No. 1593.
https://doi.org/10.3390/ijms22041593
[20] Willer, C.J., Schmidt, E.M., Sengupta, S., et al. (2013) Discovery and Refinement of Loci Associated with Lipid Levels. Nature Genetics, 45, 1274-1283.
https://doi.org/10.1038/ng.2797
[21] Dai, P., Tang, Z., Qi, M., et al. (2022) Dispersion and Utilization of Lipid Droplets Mediates Respiratory Syncytial Virus-Induced Airway Hyperresponsiveness. Pediatric Allergy and Immunology, 33, e13651.
https://doi.org/10.1111/pai.13651
[22] Chen, S., Xie, J., Zhao, K., et al. (2020) LPS Aggravates Lung Inflammation Induced by RSV by Promoting the ERK-MMP-12 Signaling Pathway in Mice. Respiratory Research, 21, Article No. 193.
https://doi.org/10.1186/s12931-020-01453-6
[23] Long, X., Xie, J., Zhao, K., et al. (2016) NK Cells Contribute to Persistent Airway Inflammation and AHR during the Later Stage of RSV Infection in Mice. Medical Microbiology and Immunology, 205, 459-470.
https://doi.org/10.1007/s00430-016-0459-9
[24] Reinke, S.N., Gallart-Ayala, H., Gómez, C., et al. (2017) Metabolomics Analysis Identifies Different Metabotypes of Asthma Severity. European Respiratory Journal, 49, Article ID: 1601740.
https://doi.org/10.1183/13993003.01740-2016
[25] Shen, Z.J., Malter, J.S., et al. (2019) Pin1 and the Response to Respiratory Viral Infection and Allergic Stimuli. Critical Reviews™ in Immunology, 39, 135-149.
https://doi.org/10.1615/CritRevImmunol.2019031697
[26] Karta, M.R., Broide, D.H. and Doherty, T.A. (2016) Insights into Group 2 Innate Lymphoid Cells in Human Airway Disease. Current Allergy and Asthma Reports, 16, Article No. 8.
https://doi.org/10.1007/s11882-015-0581-6
[27] Wall, R., Ross, R.P., Fitzgerald, G.F., et al. (2010) Fatty Acids from Fish: The Anti-Inflammatory Potential of Long-Chain Omega-3 Fatty Acids. Nutrition Reviews, 68, 280-289.
https://doi.org/10.1111/j.1753-4887.2010.00287.x
[28] Hirata, Y., Inoue, A., Suzuki, S., et al. (2020) Trans-Fatty Acids Facilitate DNA Damage-Induced Apoptosis through the Mitochondrial JNK-Sab-ROS Positive Feedback Loop. Scientific Reports, 10, Article No. 2743.
https://doi.org/10.1038/s41598-020-59636-6
[29] Lu, S., Hartert, T.V., Everard, M.L., et al. (2016) Predictors of Asthma Following Severe Respiratory Syncytial Virus (RSV) Bronchiolitis in Early Childhood. Pediatric Pulmonology, 51, 1382-1392.
https://doi.org/10.1002/ppul.23461
[30] Barochia, A.V., Kaler, M., Cuento, R.A., et al. (2015) Serum Apolipoprotein A-I and Large High-Density Lipoprotein Particles Are Positively Correlated with FEV1 in Atopic Asthma. American Journal of Respiratory and Critical Care Medicine, 191, 990-1000.
https://doi.org/10.1164/rccm.201411-1990OC
[31] Kuronuma, K., Mitsuzawa, H., Takeda, K., et al. (2009) Anionic Pulmonary Surfactant Phospholipids Inhibit Inflammatory Responses from Alveolar Macrophages and U937 Cells by Binding the Lipopolysaccharide-Interacting Proteins CD14 and MD-2. Journal of Biological Chemistry, 284, 25488-25500.
https://doi.org/10.1074/jbc.M109.040832
[32] Numata, M., Kandasamy, P., Nagashima, Y., et al. (2012) Phosphatidylglycerol Suppresses Influenza A Virus Infection. American Journal of Respiratory Cell and Molecular Biology, 46, 479-487.
https://doi.org/10.1165/rcmb.2011-0194OC
[33] 杜丽娜, 单进军, 谢彤, 等. 呼吸系统疾病相关脂类及脂质组学研究进展[J]. 中国实验方剂学杂志, 2015, 21(4): 219-223.
[34] Medeiros, A., Peres-Buzalaf, C., Fortino Verdan, F., et al. (2012) Prostaglandin E2 and the Suppression of Phagocyte Innate Immune Responses in Different Organs. Mediators of Inflammation, 20, 3275-3268.
https://doi.org/10.1155/2012/327568
[35] Fritscher, L.G., Post, M., Rodrigues, M.T., et al. (2012) Profile of Eicosanoids in Breath Condensate in Asthma and COPD. Journal of Breath Research, 6, 26-31.
https://doi.org/10.1088/1752-7155/6/2/026001
[36] Zaslona, Z., Okunishi, K., Bourdonnay, E., et al. (2014) Prostaglandin E2 Suppresses Allergic Sensitization and Lung Inflammation by Targeting the E Prostanoid 2 Receptor on T Cells. Journal of Allergy and Clinical Immunology, 133, 379-387.
https://doi.org/10.1016/j.jaci.2013.07.037
[37] Liu, T., Zaman, W., Kaphalia, B.S., et al. (2005) RSV-Induced Prostaglandin E2 Production Occurs via CPLA2 Activation: Role in Viral Replication. Virology, 343, 12-24.
https://doi.org/10.1016/j.virol.2005.08.012
[38] Yin, L., Song, Y., Liu, Y., et al. (2019) A Risk Factor for Early Wheezing in Infants: Rapid Weight Gain. BMC Pediatrics, 19, Article No. 352.
https://doi.org/10.1186/s12887-019-1720-3
[39] Antunes, K.H., Stein, R.T., Franceschina, C., et al. (2022) Short-Chain Fatty Acid Acetate Triggers Antiviral Response Mediated by RIG-I in Cells from Infants with Respiratory Syncytial Virus Bronchiolitis. EBioMedicine, 77, Article ID: 103891.
https://doi.org/10.1016/j.ebiom.2022.103891
[40] Hakola, L., Oikarinen, M., Niinistö, S., et al. (2022) Serum 25-Hydroxyvitamin D and Fatty Acids in Relation to the Risk of Microbial Infections in Children: The TRIGR Divia Study. Clinical Nutrition, 41, 2729-2739.
https://doi.org/10.1016/j.clnu.2022.10.017
[41] Hilmarsson, H., Traustason, B.S., et al. (2007) Virucidal Activities of Medium-and Long-Chain Fatty Alcohols and Lipids against Respiratory Syncytial Virus and Parainfluenza Virus Type 2: Comparison at Different pH Levels. Archives of Virology, 152, 2225-2236.
https://doi.org/10.1007/s00705-007-1063-5