肾脏缺血再灌注损伤与铁死亡关系的研究进展
Research Progress on the Relationship between Kidney Ischemia-Reperfusion Injury and Ferroptosis
DOI: 10.12677/acm.2024.1451418, PDF, HTML, XML, 下载: 49  浏览: 116 
作者: 樊清睿, 李 荣, 梁学海, 高文胜, 雷小楠:西安医学院研究生院,陕西 西安;蒲含波, 杜 春*:陕西省人民医院泌尿外科,陕西 西安
关键词: 肾脏缺血再灌注损伤铁死亡机制信号通路脂质过氧化治疗Kidney Ischemia-Reperfusion Injury Ferroptosis Mechanism Signaling Pathway Lipid Peroxidation Treatment
摘要: 肾脏缺血再灌注损伤(Ischemia-Reperfusion Injury, IRI)是导致急性肾损伤(Acute kidney injury, AKI),影响肾移植效果及心脏手术后肾功能恢复的关键因素。该过程由缺血阶段的氧气和营养物质供应不足以及随后再灌注阶段的氧化应激和炎症反应引发的细胞与组织损伤组成。铁死亡,一种与铁代谢紊乱有关的细胞死亡形式,其通过铁依赖性脂质过氧化导致细胞死亡,近年来,研究发现铁死亡在多种肾脏疾病的发病机制中扮演着重要角色,尤其是在肾脏IRI中。本综述旨在探讨肾脏IRI与铁死亡机制的联系,并总结当前通过抑制铁死亡对肾脏IRI治疗的研究进展,旨在为肾脏IRI的预防与治疗提供新的理论支撑。
Abstract: Kidney ischemia-reperfusion injury (IRI) is a key factor leading to acute kidney injury (AKI), affecting kidney transplant outcomes and post-cardiac surgery kidney function recovery. This process consists of cell and tissue damage triggered by the lack of oxygen and nutrient supply during the ischemic phase and oxidative stress and inflammatory responses during the subsequent reperfusion phase. Ferroptosis, a form of cell death associated with dysregulated iron metabolism that leads to cell death through iron-dependent lipid peroxidation, has recently been found to play a significant role in the pathogenesis of various kidney diseases, especially in kidney IRI. This review aims to explore the connection between kidney IRI and the mechanism of ferroptosis, and to summarize current research progress in treating kidney IRI by inhibiting ferroptosis, providing new theoretical support for the prevention and treatment of kidney IRI.
文章引用:樊清睿, 李荣, 梁学海, 高文胜, 雷小楠, 蒲含波, 杜春. 肾脏缺血再灌注损伤与铁死亡关系的研究进展[J]. 临床医学进展, 2024, 14(5): 227-239. https://doi.org/10.12677/acm.2024.1451418

1. 引言

缺血和再灌注(Ischemia-Reperfusion, I/R)是一种病理状况,当血供低于正常功能所需时,就会发生缺血,导致细胞代谢所需的氧气、葡萄糖和其他物质缺乏从而引起代谢失衡。尽管重建血流对缺血组织至关重要。然而,再灌注会造成进一步的损伤,导致器官的功能和生存受到威胁 [1] 。

肾脏IRI是引起AKI的主要原因之一,通常由低血容量、感染性休克、手术和移植引起,损伤不仅涉及肾脏本身,还可能引起全身炎症反应综合征(Systemic Inflammatory Response Syndrome, SIRS)和多器官功能障碍综合征(Multiple Organ Dysfunction Syndrome, MODS)等致命的全身性损伤 [2] 。目前,肾脏IRI仍缺乏有效的治疗靶点,因此开发新疗法来预防I/R引起的肾脏损伤至关重要。

铁死亡是一种依赖于铁的细胞死亡形式,与传统的凋亡、坏死等死亡方式不同 [3] 。在形态上,铁死亡主要表现为细胞膜完整性丧失和起泡、线粒体嵴缩小和线粒体双层膜密度增加 [3] ,这与铁介导的细胞氧化还原系统失衡,导致有毒磷脂氢过氧化物代谢紊乱而引起细胞膜的损伤有关。目前的研究表明,铁死亡与肾脏IRI之间存在着密切的联系。I/R期间铁的积累既促进了脂质过氧化物的形成,又影响了抗氧化系统的平衡,降低了细胞对氧化应激的防御能力,增加了肾脏组织的脆弱性,使其容易发生铁死亡 [4] 。此外,铁死亡的发生与肾脏I/R后的损伤程度和功能恢复密切相关 [5] 。因此探究铁死亡与肾脏IRI的相关机制并通过调节铁死亡来预防和治疗肾脏IRI尤为重要。

2. I/R的损伤机制

2.1. 自由基的产生

在I/R发生时,自由基的产生和作用是损伤中的关键因素。自由基是具有一个或多个未成对电子的独立存在的物质,具有很高的活性。能够迅速与周围的蛋白质、DNA等重要生物分子发生反应形成新的化合物,导致细胞损伤或死亡 [6] 。在生物系统中,主要的自由基是活性氧(Reactive Oxygen Species, ROS),尤其是超氧化物(O2−)。除了以氧为中心的自由基之外,还有其他一些重要的自由基,例如羟基自由基OH•和Fe2+。I/R时自由基的产生主要涉及黄嘌呤氧化酶系统。缺血期间,ATP的消耗导致黄嘌呤(ATP代谢产物)浓度升高,黄嘌呤可以被黄嘌呤脱氢酶氧化成尿酸,也可以被黄嘌呤氧化酶氧化,并在此过程中释放超氧化物。在缺血期间,会引发黄嘌呤脱氢酶向黄嘌呤氧化酶的转化,从而导致黄嘌呤氧化酶及其第一个底物–黄嘌呤的水平在缺血组织中积累,再灌注时,黄嘌呤氧化酶的第二个底物–氧分子被引入,触发反应的进行,从而产生大量自由基 [7] 。在缺血期间,铁也会释放到组织中 [8] ,在Fenton反应(Fenton Reaction)中,Fe3+通过O2−还原成Fe2+,然后将电子传递给过氧化氢,生成OH•。此外,黄嘌呤氧化酶和再灌注期间产生的自由基会促进更多的铁释放,从而产生大量的OH• [9] 。细胞膜也是自由基诱导的活性氧(例如脂质过氧化物)生成的场所。自由基通过从位于细胞膜脂质分子中两个不饱和键之间的亚甲基中夺取氢原子来启动脂质过氧化。这一过程导致了一个新的以碳为中心的脂质自由基形成。在氧气的存在下,新形成的脂质自由基导致脂质过氧化物的产生 [10] 。研究表明,多种抗氧化剂被用来阻止过氧化过程,这些抗氧化剂可以捕获自由基,阻止脂质过氧化的发生,从而为预防和治疗自由基引起的损伤提供了一种有效的手段 [11] 。

2.2. 免疫系统的激活

2.2.1. 先天性免疫系统的激活

细胞损伤与先天免疫系统激活之间的桥梁是坏死细胞释放的损伤相关分子模式(Damage-Associated Molecular Patterns, DAMP)。DAMP可以是胞质的(例如,热休克蛋白HSP)、核的(高迁移率族蛋白1,HMGB1)、线粒体的(线粒体ROS、线粒体DNA)或细胞外的(纤维连接蛋白、透明质酸)来源,并通过细胞表面存在的模式识别受体(Pattern Recognition Receptors, PRRs)被肾脏驻留细胞和先天免疫细胞识别。PRR是一组能够识别DAMP并随后激活下游炎症反应以控制或修复细胞损伤的固有编码蛋白家族。这些受体的激活导致促炎细胞因子和趋化因子的产生和白细胞的激活。目前已经鉴定出了多种不同的PRR家族,例如NOD样受体(NOD-like Receptors, NLR)、Toll样受体(Toll-like Receptors, TLR) [12] [13] 。与肾脏IRI相关的是TLR家族,多项研究表明I/R能够在多种体内外模型中上调肾小管上皮细胞中TLR2和TLR4的表达 [14] [15] 。TLR介导的信号转导导致转录因子核因子-κB (Transcription Factor Nuclear Factor-kappa B, NF-κB)的激活,进而促进NOD样受体蛋白3 (NLRP3)、前白细胞介素-1β (Pro-Interleukin-1β, Pro-IL-1β)和前白细胞介素-18 (Pro-Interleukin-18, Pro-IL-18)的表达。NLRP3与前半胱氨酸蛋白酶-1 (Cysteine-aspartic protease 1, caspase-1)和适应性免疫相关蛋白(Apoptosis-associated Speck-like protein containing a CARD, ASC)组装形成NLRP3炎症体。NLRP3炎症体通过离子紊乱、溶酶体泄漏和线粒体破坏被激活,并能将Pro-caspase-1转化为caspase-1。caspase-1随后激活Pro-IL-18和Pro-IL-1β。激活的IL-1β和IL-18能够引起先天免疫细胞(中性粒细胞、NK细胞、巨噬细胞)的聚集和细胞因子的释放,从而引起器官损伤 [16] [17] 。同时,微血管的内皮细胞上调黏附分子的表达并且通透性增加。最终引起无菌性炎症,导致已受损组织再一次遭受打击。未成熟的树突状细胞可以通过损伤相关分子模式(Damage-Associated Molecular Patterns, DAMP)被激活,并通过抗原呈递给B细胞和T细胞或通过细胞因子信号间接激活适应性免疫系统。此外,补体系统的激活也与IRI的先天免疫反应有关 [18] 。

2.2.2. 中性粒细胞的激活

缺血组织的再灌注会导致局部中性粒细胞积聚,中性粒细胞在微血管内的积聚与局部和全身的损伤相关联。有充分的证据表明,中性粒细胞与这些损伤密切相关,循环中中性粒细胞的消耗可以有效地防止I/R中微血管通透性增加和水肿的形成 [19] [20] 。在I/R中,中性粒细胞与内皮细胞的相互作用是损伤的前提条件。在缺血期间,尤其是再灌注之后,在毛细血管后静脉中可以看到中性粒细胞与内皮的黏附性增强 [21] ,这可能与自由基产生后促进炎症介质如磷脂酰胆碱(Platelet-Activating Factor, PAF)和白三烯B4 (Leukotriene B4, LTB4)的形成,诱导内皮黏附糖蛋白的表达和激活 [22] [23] ,或者失活内源性抗黏附分子–一氧化氮有关 [24] 。暴露于缺血组织的中性粒细胞可能在再灌注后以激活状态重新进入体循环。这些活化的中性粒细胞被认为是引起远端器官损伤的重要介质。激活的中性粒细胞可表达黏附分子CD11/CD18和整合素,黏附并穿过内皮,通过释放自由基、蛋白水解酶和过氧化物酶引起局部微血管通透性增加、水肿、血栓形成和实质细胞死亡 [25] 。此外,激活的中性粒细胞在肺部和其他器官的滞留是多器官功能衰竭发生的一个重要步骤 [26] 。因此控制中性粒细胞的活动是治疗IRI的重要策略。

2.2.3. T细胞与B细胞的激活

T细胞在肾脏IRI中的作用已得到证实。研究显示,缺乏CD4和CD8 T细胞的小鼠在I/R后炎症细胞浸润和肾小管萎缩减少,肾功能显著改善。这表明T细胞的消耗对于保护肾脏IRI是有益的 [27] [28] 。此外,T细胞受体(T Cell Receptor, TCR)对肾脏IRI也有影响,例如αβ-TCR和γδ-TCR缺陷的小鼠在I/R后血清肌酐水平和组织病理学损伤方面相较于野生型小鼠有所改善,这表明某些T细胞受体亚型的缺失可减轻肾脏IRI [29] [30] 。B细胞在免疫应答中发挥着不可缺少的作用,其在肾脏IRI中的作用最近开始受到关注。Hongzhao Fan [31] 等对此进行了详细的描述,表明B细胞通过先天和适应性免疫反应介导了肾脏IRI。B细胞通过细胞因子和抗体介导的免疫反应加剧了组织损伤。然而,调节性B细胞(Bregs)可以通过分泌免疫抑制性细胞因子,如白细胞介素-10 (IL-10)来减轻肾脏IRI。这表明B细胞在肾脏IRI中扮演着双重角色,并为通过B细胞来减轻肾脏IRI提供了研究方向。

2.2.4. 补体系统的激活

I/R可以通过三条主要途径(经典途径、替代途径和凝集素途径)激活补体级联反应,随后形成膜攻击复合物(Membrane Attack Complex, MAC)导致组织损伤。此外,补体级联反应的激活导致C3和C5组分的分割,生成阳离子毒素(C3a、C5a)和补体成分(iC3b和C5b-9)的炎症介质,这些介质可以破坏血管稳态。C5a是这些介质中最有效的,它通过促进白细胞激活、趋化以及分泌如单核细胞趋化蛋白-1 (Monocyte Chemoattractant Protein-1, MCP-1)、肿瘤坏死因子α (Tumor Necrosis Factor-alpha, TNF-α)、IL-1和IL-6等细胞因子,增强炎症反应 [32] [33] 。iC3b是从C3b裂解而来,通过β2整合素CD11b-CD18相互作用促进白细胞与血管内皮粘附,而C5b-9激活NF-κB以增加白细胞粘附分子(例如血管细胞粘附分子1、E-选择素和P-选择素)的转录和表达,其次C5b-9还通过诱导内皮IL-8和单核细胞趋化蛋白-1 (Monocyte Chemoattractant Protein-1, MCP-1)分泌来促进白细胞活化和趋化。最后,C5b-9可能通过减少内皮环单磷酸鸟苷(cyclic guanosine monophosphate, cGMP)来改变血管张力。这些过程共同导致了血管稳态的改变和白细胞-内皮细胞粘附增加来加重IRI [34] 。而通过C5a免疫中和 [35] 或C5遗传缺陷小鼠 [36] 干扰补体激活,可在多种实验模型中减轻IRI。

2.3. 钙超载

IRI过程中的钙超载与细胞生理平衡的紊乱有关,导致ATP水平下降,这降低了Na+-K+-ATP酶的活性,增加了细胞内Na+水平,进而通过Na+-Ca2+交换提高了细胞内Ca2+浓度。钙超载可以通过增加ROS、激活炎症细胞、干扰线粒体功能来损害细胞。而使用如维拉帕米这样的钙通道阻滞剂 [37] 、Na+-Ca2+交换抑制剂KB-R7943 [38] 以及通过调节线粒体ATD敏感性钾通道(Mitochondrial ATP-Sensitive Potassium Channel, mitoKATP)和线粒体通透性转换孔(Mitochondrial Permeability Transition Pore, mPTP)差异等 [39] 都可以通过降低细胞内Ca2+水平来减轻IRI。

2.4. 一氧化氮–超氧化物失衡

I/R引发的微血管功能障碍与一氧化氮(Nitric Oxide, NO)和超氧化物之间的失衡密切相关。正常情况下,NO的生成速率远高于超氧化物,从而有效清除细胞内低水平的超氧化物,通过激活血管平滑肌的鸟苷酸环化酶来降低小动脉的张力,防止血小板聚集和血栓形成,并减少白细胞与内皮细胞的相互作用。然而,在I/R后,NO与超氧化物之间的平衡倾向于超氧化物,这一失衡是由于内皮细胞以及附着的白细胞产生的超氧化物剧增以及由内皮NO合酶合成的NO下降造成的。内皮细胞产生的少量NO与大量超氧化物反应,只留下很少或没有生物活性的NO来抵抗血细胞–内皮细胞相互作用。此外,由于NO是重要的第二信使,当内源性血管舒张剂(如乙酰胆碱)与内皮细胞受体相互作用时,内皮依赖性血管舒张功能受损。在I/R后NO缺失的情况下,超氧化物的积累可以快速引发或加剧血管中的炎症反应,通过诱导血小板活化因子、促进补体在内皮细胞表面的沉积以及动员P-选择素到内皮细胞表面,从而介导白细胞粘附。此外,这些超氧化物还通过激活编码黏附分子,如E-选择素和细胞间黏附分子1 (Intercellular Adhesion Molecule 1, ICAM-1)的基因来使得再灌注几小时后发生白细胞–内皮细胞黏附,从而进一步加重IRI [40] 。

2.5. 线粒体通透性转换孔的开放

正常线粒体功能的关键在于其内膜对除了少数特殊的代谢物和离子之外的所有物质都保持不通透。如果这个屏障损伤,会使得ATP生成障碍,最终细胞内代谢物和离子浓度的全面失调会使细胞死亡。这种线粒体内膜(mitochondrial inner membrane, IMM)非特异性通透性的增加可以通过一种称为线粒体渗透性转变(mitochondrial permeability transition, mPT)的过程发生。它是由IMM中mPTP的打开引起的,该孔道可以运输任何小于1500 Da的分子。缺血期间,细胞内ATP水平下降、细胞内钙离子浓度升高和氧化应激增加。这些变化促进mPTP的打开。mPTP的打开导致线粒体膜通透性增加,使得线粒体内外物质交换失控,进而导致线粒体膜电位丧失和细胞死亡。再灌注期间,血流恢复导致大量自由基的产生,进一步加剧氧化应激,导致更多的mPTP开放。这不仅加剧了细胞损伤,还促进了程序性细胞死亡的路径,如凋亡和坏死 [41] [42] [43] [44] 。最近的研究报道,抑制mPTP的开放可以保护线粒体从而减轻肾脏IRI [45] [46] 。因此,针对mPTP的治疗策略可能为减轻肾脏IRI提供有效手段。

3. 铁死亡

3.1. 铁死亡的发生机制

铁死亡是以ROS和铁离子介导的脂质过氧化为主要特征。ROS是部分还原的含氧分子的总称,由氧部分还原形成超氧化物(O2)、过氧化氢(H2O2)和羟自由基(HO•)以及次级代谢产物,例如脂质过氧化物。内源性ROS产生的主要来源是线粒体、质膜、内质网和过氧化物酶体 [47] 。Fe2+在ROS的形成中发挥着至关重要的作用,Fe2+与过氧化物(如过氧化氢和脂质过氧化物)通过芬顿反应产生羟自由基(HO•)或脂质烷氧基(RO•)自由基。脂质过氧化是铁死亡的典型特征,任何可以从可氧化底物,例如多不饱和脂肪酸磷脂(PUFA-PLH)中夺取原子的自由基都可以引发脂质过氧化。其关键步骤为,通过引发自由基从底物(如PUFA-PLH)中夺取不稳定氢原子,产生以碳为中心的脂质自由基(PUFA-PL•),该自由基随后与O2反应,产生过氧自由基(PUFA-PLOO•),该过氧自由基可以通过与底物的另一个分子(另一个PUFA-PLH)反应形成磷脂氢过氧化物(PLOOH)和另一个脂质自由基(PUFA-PL•) (即:PUFA-PLOO• + PUFA-PLH = PUFA-PLOOH + PUFA-PL•) [48] 。一旦脂质过氧化开始,连锁反应就会发生,直至产生最终产物,如4-羟基壬烯酸(4-Hydroxynonenal, 4-HNE)、丙二醛(Malondialdehyde, MDA)以及各种氧化和修饰的蛋白质。这些反应最终加速细胞器和细胞膜的破裂,引起细胞死亡。

3.2. 铁代谢与铁死亡

氧和铁之间的相互作用使得细胞内形成了一种平衡系统,控制与铁相关的氧化应激,使细胞在相对安全的情况下利用铁的氧化还原特性来进行各种代谢。但当这种平衡被打破时,游离铁及其相关的活性氧会阻止生物活性并导致细胞死亡。游离铁由细胞内的不稳定铁池严格调控在0.5~1.5 μM,(<5%细胞内铁总量),这些铁用于生物合成(例如血红素)过程。由于游离铁水平相对较低,因此铁相关自由基造成的损伤在生理水平上会受到广泛限制 [49] 。由于铁易于接受和给予电子。因此铁一旦释放成游离催化形式,就会变为损伤介质,激发活性氧的产生 [50] 。Fe3+可通过膜蛋白(Transferrin Receptor 1, TFR1)转移到细胞中 。而过表达热休克蛋白β-1 (HSP beta-1, HSPB1)可以通过抑制TFR1表达来降低细胞内铁浓度,从而抑制铁死亡 [51] 。而细胞内铁输出是由铁载体蛋白(Ferroportin-1, FPN1)介导的,因此FPN1表达减少可以增加细胞对铁死亡的敏感性 [52] 。铁蛋白是一种结构高度保守的分子,能够以安全、可溶和生物可利用的形式储存大量铁。铁蛋白由铁蛋白轻链(Ferritin Light Chain, FTL)和铁蛋白重链1 (Ferritin Heavy Chain 1, FTH1)组成 [53] ,其中FTH1具有亚铁氧化酶活性,可将Fe2+转化为Fe3+,使铁安全地与铁蛋白结合,从而降低细胞内高水平游离铁 [53] 。核受体激活剂4 (Nuclear Receptor Coactivator 4, NCOA4)可以与铁蛋白结合并将其递送至溶酶体进行降解,从而增加细胞内的铁浓度,最终促进铁死亡 [54] 。总之,在生理条件下,铁与转铁蛋白、铁蛋白等蛋白质结合,并呈Fe3+形式,然而,在病理条件下,铁很容易参与单电子转移反应并转化为高反应性和毒性的二价铁,这是铁死亡的关键上游驱动因素。

3.3. 铁代谢与肾脏IRI

目前的研究表明肾脏I/R中的铁代谢出现严重紊乱。BART DE VRIES等在动物实验中发现,肾脏缺血会导致再灌注期间循环氧化还原活性铁水平显着增加。而再灌注前腹腔内注射转铁蛋白可通过减少氧化还原活性铁的量,抑制氧化应激从而减轻肾脏IRI [55] 。此外,Yogesh Scindia等也证实肾脏I/R会导致小鼠体内铁代谢紊乱。但不同的是,他们发现铁调素的治疗可以通过降解转铁蛋白,使细胞内的铁增多从而诱导FTH1的表达并螯合游离铁来发挥保护作用 [56] 。同样,在小鼠体内实验中发现,在缺血后再灌注的最初5分钟内输注铁复合物时会加剧自由基介导的脂质过氧化。相反,在再灌注的前60分钟内输注铁螯合剂去铁胺可减少脂质过氧化并显著改善肾功能 [11] 。而铁螯合剂的保护作用同样在肾近曲小管上皮细胞缺氧复氧的体外模型中被证实 [57] 。尽管去铁胺确实可以减轻动物模型中的肾脏IRI。然而,相关的毒性作用妨碍了其在人类肾脏IRI中的临床应用 [58] 。总之,通过增强内源性氧化还原活性铁结合能力可能是治疗肾脏IRI的重要策略。

3.4. 铁死亡抑制通路与肾脏IRI的联系

3.4.1. GPX4与系统Xc-途径

谷胱甘肽过氧化物酶4 (Glutathione Peroxidase 4, GPX4)是人体最强大的抗氧化酶之一。谷胱甘肽(Glutathione, GSH)作为GPX4的辅因子,促进细胞内脂质过氧化物(PLOOH)还原为其对应的醇(PLOH)从而保护细胞。GSH是细胞内主要的抗氧化剂,其合成依赖于半胱氨酸,后者通过Xc-系统进入细胞,促进GSH合成。半胱氨酸输入的抑制会显著阻碍GSH合成,引起脂质过氧化物的积累,导致铁死亡。Xc-系统的活性亚单位溶质载体家族7成员11 (Solute Carrier Family 7 Member 11, SLC7A11)是GSH水平的关键调控者,从而影响铁死亡的发生 [59] [60] 。研究发现Liproxstatin-1 (铁死亡抑制剂),能够显著减轻GPX4抑制和I/R引起的肾脏损伤 [61] 。此外,Chenguang Ding等 [62] 通过建立大鼠肾脏IRI模型和体外细胞的缺氧/复氧损伤模型,发现两种miRNA可通过直接靶向GPX4和SLC7A11 来抑制它们的表达,从而诱导铁死亡。而沉默这两种miRNA能够使损伤减轻,表明通过调控GPX4与SLC7A11可作为治疗肾脏IRI的潜在方式。

3.4.2. FSP1/CoQ途径

铁死亡抑制因子1 (Ferroptosis Suppressor Protein 1, FSP1)是一种独立于GPX4途径的铁死亡抑制因子,主要在细胞膜上发挥作用。研究证实,FSP1过表达能显著减少由GPX4抑制引起的铁死亡。FSP1可通过将细胞膜上的辅酶Q10 (CoQ10)还原为还原型辅酶Q10 (CoQH2)来抑制铁死亡,后者作为一种抗氧化剂捕获自由基,从而防止脂质过氧化 [63] 。Yonghui Wu等发现,FSP1过表达可通过激活PI3K/AKT/GSK3β信号通路减轻PC12细胞氧–葡萄糖剥夺/再氧合诱导的铁死亡,提高细胞生存率。这些发现为IRI的治疗提供了新的线索 [64] 。

3.4.3. DHODH通路

线粒体在氧化磷酸化中可以产生大量的ROS。当线粒体无法清除这些ROS时,会引发脂质过氧化。二氢乳酸脱氢酶(DHODH)是一种位于线粒体内膜的黄素依赖酶,主要功能是催化嘧啶生物合成途径的第四步,即二氢鸟嘌呤(dihydroorotate, DHO)氧化生成尿苷酸(Orotate, OA) [65] 。研究表明,补充DHO或者OA可以分别减少或增加由GPX4抑制引起的铁死亡,随后发现,在DHO向OA转变的过程中可同时将电子传递给线粒体内膜上的CoQ10,使其还原成CoQH2,从而抑制铁死亡 [66] 。Emily Davis Alexander等 [67] 通过使用DHODH抑制剂Teriflunomide (TERI)观察其对大鼠心脏IRI的影响。结果显示,TERI处理加剧了大鼠离体心脏的IRI,导致心肌梗死面积增加、收缩功能严重受损,以及冠脉血流减少。然而是否可以通过调控DHODH通路抑制铁死亡来减轻肾脏IRI值得进一步研究。

3.4.4. Keap1-NRF2通路

核因子红细胞2相关因子(nuclear factor erythroid 2-related factor 2, NRF2)是一种应激诱导转录因子。在生理条件下,细胞质蛋白Kelch样ECH相关蛋白1 (Keap1)与NRF2结合,通过介导其泛素化和降解来抑制NRF2激活。当暴露于氧化应激后,Keap1结构域内的半胱氨酸残基(如Cys273和Cys288)被共价修饰。导致Keap1-NRF2结合的稳定性降低,从而使NRF2去抑制。结果,NRF2从Keap1中释放出来,并转移到细胞核中,与细胞核内的一种小Maf (肌肉腱膜纤维肉瘤癌基因同源物)蛋白异二聚化。异二聚体识别抗氧化反应元件(Antioxidant Response Element,ARE,即NRF2靶基因调控区域中存在的增强子序列),从而诱导抗氧化应激相关酶的基因表达,例如谷胱甘肽S-转移酶(Glutathione S-Transferase, GST)和血红素加氧酶-1 (Heme Oxygenase-1, HO-1) [68] 。自噬相关蛋白1 (Sequestosome 1,SQSTM1,也称为p62)可以竞争性地结合Keap1,从而促进NRF2激活 [69] 。目前,NRF2已被证明可以通过调节氧化应激、铁和脂质代谢来发挥抗铁死亡作用 [70] 。Jiahong Yang等 [71] 报道,恩他卡蓬通过上调p62表达,促进NRF2的核内转移,诱导SLC7a11表达增加,有效抑制了肾脏IRI中的铁死亡;Yue-Bo Huang等 [72] 也报道了褪黑素能通过调节NRF2/Slc7a11轴引起相同的结果。因此,通过调节Keap1-NRF2通路来抑制铁死亡为减轻肾脏IRI的治疗提供了有效的治疗靶点。

4. 抑制铁死亡在肾脏IRI治疗中的潜在应用

4.1. 基于细胞外小泡和非编码RNA的疗法

研究发现来自人尿源性干细胞的外泌体(USC-Exo)内长非编码RNA (lncRNA) TUG1通过与RNA结合蛋白SRSF1的相互作用,进而调控长链脂肪酰CoA合成酶家族成员4 (Acyl-CoA Synthetase Long Chain Family Member 4, ACSL4) mRNA的稳定性,从而抑制肾脏IRI中ACSL4介导的铁死亡 [73] ;同样,miR-20a-5p通过靶向ACSL4 mRNA的3'非编码区来抑制ACSL4的表达,从而抑制铁死亡,减轻肾脏IRI [74] ;此外,研究发现肾脏I/R细胞会分泌携带lncRNA WAC-AS1的细胞外小泡(sEVs),通过重新编码邻近肾小管上皮细胞群的代谢从而诱导铁死亡传播,形成“铁死亡波”,导致更大面积的肾小管坏死。而通过GW4869抑制sEV的合成和分泌以及在I/R-sEVs中敲除lncRNA WAC-AS1,都明显减少了“铁死亡波”的传播,并减轻肾脏同种异体移植物的IRI [75] 。

4.2. 化合物或药物治疗

目前已经发现多种化合物或药物表现出抗铁死亡活性,并且在减轻肾脏IRI中表现出良好的效果。SKQ1是一种针对线粒体的抗氧化剂,研究发现,SKQ1能够通过减少脂质过氧化和线粒体损伤,从而抑制铁死亡,减轻肾脏IRI [76] ;氨基丁酸可以通过降低ACSL4的表达使AMPK蛋白表达水平降低,而使雷帕霉素作用机制靶点蛋白(Mechanistic Target of Rapamycin, mTOR)表达水平增加来减轻肾脏IRI中的铁死亡 [77] ;花青素-3-葡萄糖苷通过激活AMPK通路,逆转I/R后肾脏ACSL4表达的增加和GPX4、GSH的抑制,减少细胞内铁积累,降低脂质过氧化物水平而抑制铁死亡 [78] ;肌肽能够通过与GPX4蛋白结合,使其具有更高的稳定性从而减轻肾脏IRI损伤 [79] ;芍药苷可以增强Slc7a11的表达,抑制肾脏IRI中的铁死亡 [80] ;茯苓酸能直接或间接促进NRF2信号通路的激活,进而增加其下游的GPX4、SLC7A11和HO-1的表达来抑制铁死亡,减轻肾脏IRI [81] ;米托格列酮通过靶向线粒体外膜蛋白mitoNEET,减少线粒体膜电位超极化和铁相关的脂质过氧化物产生,从而减轻肾脏IRI [82] ;葛根素预处理可以增加肾脏IRI中SOD和GSH的水平,并逆转ASCL4表达的升高,FSP1和GPX4表达的降低来减轻肾脏IRI,随后发现这与TLR4/Nox4通路的激活有关 [83] 。

4.3. 靶向某些酶或蛋白质

泛素特异性蛋白酶14 (Ubiquitin-Specific Peptidase 14, USP14)是一种去泛素化酶,在肾脏IRI中,抑制USP14可以通过减少Fe2+的积累、降低ROS和脂质过氧化的水平来抑制铁死亡,改善肾功能和减少组织损伤 [84] ;Pannexin 1 (Panx1)是一种ATP释放途径家族蛋白,通过敲除Panx1可以减少因IRI中上调的NCOA4来减少铁积累,并通过上调HO-1的表达来减轻肾脏IRI中的铁死亡 [85] ;微粒体前列腺素E合酶-2的敲低可通过p53/SLC7A11/GPX4轴抑制铁死亡,减轻肾脏IRI [86] ;赖氨酸特异性去甲基化酶1 (Lysine-specific demethylase 1, LSD1)在肾脏I/R后上调,并通过激活TLR4/NOX4通路加剧铁死亡,而使用LSD1抑制剂TCP可以减少TLR4启动子区域H3K9me2的富集引起的TLR4/NOX4通路激活,从而减轻肾脏IRI [87] 。

4.4. 纳米颗粒技术

研究显示,中性粒细胞膜包裹的铜基纳米颗粒(N-Cu5.4O@DFO NPs),在体内外实验中表现出优异的ROS和铁清除能力,有效抑制了铁死亡并减轻了肾脏IRI [88] ;同样,中性粒细胞膜包裹的CoQ10纳米颗粒(N-NPCoQ10)也具有相同的效果 [89] ;此外,线粒体靶向纳米载体介导的CoQ10 (T-NPCoQ10)也表现出对小鼠肾脏IRI的改善作用 [90] ,然而是否通过CoQ10的抗氧化应激作用来抑制铁死亡,还需要进一步证明。总之,这些研究突显了纳米颗粒技术在治疗肾脏IRI方面的前景。

5. 结语

肾脏IRI是一种涉及多种细胞和分子途径的复杂生理过程,铁死亡作为其关键组成部分,揭示了铁代谢失衡和氧化应激在此过程中的重要作用。尽管当前的研究已经在理解这一机制方面取得了显著进展,但仍需进一步探索更为精确的分子靶点,以开发出更有效的治疗策略。研究应集中在细化铁死亡在肾脏IRI中的作用机制,尤其是在不同阶段的具体作用,以及如何通过调节铁稳态及相关信号通路来有效减轻肾脏损伤。此外,探索基于这些机制的新型治疗方法,都将为临床治疗提供新的思路,从而实现对肾脏IRI的有效治疗。

NOTES

*通讯作者。

参考文献

[1] Soares, R., Losada, D.M., Jordani, M.C., Évora, P. and Castro-e-Silva, O. (2019) Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. International Journal of Molecular Sciences, 20, Article 5034.
https://doi.org/10.3390/ijms20205034
[2] Collard, C.D. and Gelman, S. (2001) Pathophysiology, Clinical Manifestations, and Prevention of Ischemia-Reperfusion Injury. Anesthesiology, 94, 1133-1138.
https://doi.org/10.1097/00000542-200106000-00030
[3] Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072.
https://doi.org/10.1016/j.cell.2012.03.042
[4] Xie, G.L., Zhu, L., Zhang, Y.M., Zhang, Q.N. and Yu, Q. (2017) Change in Iron Metabolism in Rats after Renal Ischemia/Reperfusion Injury. PLOS ONE, 12, e0175945.
https://doi.org/10.1371/journal.pone.0175945
[5] Hammad, F.T., Al-Salam, S., Ahmad, R., et al. (2023) The Effect of Nerolidol Renal Dysfunction Following Ischemia-Reperfusion Injury in the Rat. Nutrients, 15, Article 455.
https://doi.org/10.3390/nu15020455
[6] Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M. and Telser, J. (2007) Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. The International Journal of Biochemistry & Cell Biology, 39, 44-84.
https://doi.org/10.1016/j.biocel.2006.07.001
[7] Welbourn, C.R., Goldman, G., Paterson, I.S., Valeri, C.R., Shepro, D. and Hechtman, H.B. (1991) Pathophysiology of Ischaemia Reperfusion Injury: Central Role of the Neutrophil. British Journal of Surgery, 78, 651-655.
https://doi.org/10.1002/bjs.1800780607
[8] Halliwell, B. and Gutteridge, J.M. (1986) Oxygen Free Radicals and Iron in Relation to Biology and Medicine: Some Problems and Concepts. Archives of Biochemistry and Biophysics, 246, 501-514.
https://doi.org/10.1016/0003-9861(86)90305-X
[9] Hernandez, L.A., Grisham, M.B. and Granger, D.N. (1987) A Role for Iron in Oxidant-Mediated Ischemic Injury to Intestinal Microvasculature. American Journal of Physiology-Gastrointestinal and Liver Physiology, 253, G49-G53.
https://doi.org/10.1152/ajpgi.1987.253.1.G49
[10] Slater, T.F., Cheeseman, K.H., Davies, M.J., Proudfoot, K. and Xin, W. (1987) Free Radical Mechanisms in Relation to Tissue Injury. Proceedings of the Nutrition Society, 46, 1-12.
https://doi.org/10.1079/PNS19870003
[11] Greene, E.L. and Paller, M.S. (1991) Oxygen Free Radicals in Acute Renal Failure. Mineral and Electrolyte Metabolism, 17, 124-132.
[12] Li, D. and Wu, M. (2021) Pattern Recognition Receptors in Health and Diseases. Signal Transduction and Targeted Therapy, 6, Articke 291.
https://doi.org/10.1038/s41392-021-00687-0
[13] Wicherska-PawłOwska, K., Wróbel, T. and Rybka, J (2021) Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. International Journal of Molecular Sciences, 22, Article 13397.
https://doi.org/10.3390/ijms222413397
[14] Wu, H., Chen, G., Wyburn, K.R., et al. (2007) TLR4 Activation Mediates Kidney Ischemia/Reperfusion Injury. Journal of Clinical Investigation, 117, 2847-2859.
https://doi.org/10.1172/JCI31008
[15] Rusai, K., Sollinger, D., Baumann, M., et al. (2010) Toll-Like Receptors 2 and 4 in Renal Ischemia/Reperfusion Injury. Pediatric Nephrology, 25, 853-860.
https://doi.org/10.1007/s00467-009-1422-4
[16] Kawasaki, T. and Kawai, T. (2014) Toll-Like Receptor Signaling Pathways. Frontiers in Immunology, 5, Article 461.
https://doi.org/10.3389/fimmu.2014.00461
[17] Su, X., Liu, B., Wang, S., et al. (2022) NLRP3 Inflammasome: A Potential Therapeutic Target to Minimize Renal Ischemia/Reperfusion Injury during Transplantation. Transplant Immunology, 75, Article 101718.
https://doi.org/10.1016/j.trim.2022.101718
[18] Howard, M.C., Nauser, C.L., Farrar, C.A. and Sacks, S.H. (2021) Complement in Ischaemia-Reperfusion Injury and Transplantation. Seminars in Immunopathology, 43, 789-797.
https://doi.org/10.1007/s00281-021-00896-3
[19] Klausner, J.M., Paterson, I.S., Valeri, C.R., Shepro, D. and Hechtman, H.B. (1988) Limb Ischemia-Induced Increase in Permeability Is Mediated by Leukocytes and Leukotrienes. Annals of Surgery, 208, 755-760.
https://doi.org/10.1097/00000658-198812000-00014
[20] Seekamp, A., Mulligan, M.S., Till, G.O. and Ward, P.A. (1993) Requirements for Neutrophil Products and L-Arginine in Ischemia-Reperfusion Injury. American Journal of Pathology, 142, 1217-1226.
[21] Kurose, I., anderson, D.C., Miyasaka, M., et al. (1994) Molecular Determinants of Reperfusion-Induced Leukocyte Adhesion and Vascular Protein Leakage. Circulation Research, 74, 336-343.
https://doi.org/10.1161/01.RES.74.2.336
[22] Palmblad, J., Malmsten, C.L., Udén, A.M., Rådmark, O., Engstedt, L. and Samuelsson, B (1981) Leukotriene B4 Is a Potent and Stereospecific Stimulator of Neutrophil Chemotaxis and Adherence. Blood, 58, 658-661.
https://doi.org/10.1182/blood.V58.3.658.658
[23] Kubes, P., Ibbotson, G., Russell, J., Wallace, J.L. and Granger, D.N. (1990) Role of Platelet-Activating Factor in Ischemia/Reperfusion-Induced Leukocyte Adherence. American Journal of Physiology-Gastrointestinal and Liver Physiology, 259, G300-G305.
https://doi.org/10.1152/ajpgi.1990.259.2.G300
[24] Granger, D.N., Kvietys, P.R. and Perry, M.A. (1993) Leukocyte-Endothelial Cell Adhesion Induced by Ischemia and Reperfusion. Canadian Journal of Physiology and Pharmacology, 71, 67-75.
https://doi.org/10.1139/y93-011
[25] Panés, J., Perry, M. and Granger, D.N. (1999) Leukocyte-Endothelial Cell Adhesion: Avenues for Therapeutic Intervention. British Journal of Pharmacology, 126, 537-550.
https://doi.org/10.1038/sj.bjp.0702328
[26] Windsor, A.C., Mullen, P.G., Fowler, A.A. and Sugerman, H.J. (1993) Role of the Neutrophil in Adult Respiratory Distress Syndrome. British Journal of Surgery, 80, 10-17.
https://doi.org/10.1002/bjs.1800800106
[27] Rabb, H., Daniels, F., O’Donnell, M., et al. (2000) Pathophysiological Role of T Lymphocytes in Renal Ischemia-Reperfusion Injury in Mice. American Journal of Physiology-Renal Physiology, 279, F525-F531.
https://doi.org/10.1152/ajprenal.2000.279.3.F525
[28] Martina, M.N., Noel, S., Bandapalle, S., Hamad, A.R. and Rabb, H. (2014) T Lymphocytes and Acute Kidney Injury: Update. Nephron Clinical Practice, 127, 51-55.
https://doi.org/10.1159/000363719
[29] Savransky, V., Molls, R.R., Burne-Taney, M., Chien, C.C., Racusen, L. and Rabb, H. (2006) Role of the T-Cell Receptor in Kidney Ischemia-Reperfusion Injury. Kidney International, 69, 233-238.
https://doi.org/10.1038/sj.ki.5000038
[30] Hochegger, K., Schätz, T., Eller, P., et al. (2007) Role of Alpha/Beta and Gamma/Delta T Cells in Renal Ischemia-Reperfusion Injury. American Journal of Physiology-Renal Physiology, 293, F741-F747.
https://doi.org/10.1152/ajprenal.00486.2006
[31] Fan, H., Liu, J., Sun, J., Feng, G. and Li, J. (2023) Advances in the Study of B Cells in Renal Ischemia-Reperfusion Injury. Frontiers in Immunology, 14, Article 1216094.
https://doi.org/10.3389/fimmu.2023.1216094
[32] Lucchesi, B.R. (1994) Complement, Neutrophils and Free Radicals: Mediators of Reperfusion Injury. Arzneimittelforschung, 44, 420-432.
[33] Kirschfink, M. (1997) Controlling the Complement System in Inflammation. Immunopharmacology, 38, 51-62.
https://doi.org/10.1016/S0162-3109(97)00057-X
[34] Collard, C.D., Lekowski, R., Jordan, J.E., Agah, A. and Stahl, G.L. (1999) Complement Activation Following Oxidative Stress. Molecular Immunology, 36, 941-948.
https://doi.org/10.1016/S0161-5890(99)00116-9
[35] Stevens, J.H., O’Hanley, P., Shapiro, J.M., et al. (1986) Effects of Anti-C5a Antibodies on the Adult Respiratory Distress Syndrome in Septic Primates. Journal of Clinical Investigation, 77, 1812-1816.
https://doi.org/10.1172/JCI112506
[36] Olson, L.M., Moss, G.S., Baukus, O. and Das Gupta, T.K. (1985) The Role of C5 in Septic Lung Injury. Annals of Surgery, 202, 771-776.
https://doi.org/10.1097/00000658-198512000-00018
[37] Nauta, R.J., Tsimoyiannis, E., Uribe, M., Walsh, D.B., Miller, D. and Butterfield, A. (1991) The Role of Calcium Ions and Calcium Channel Entry Blockers in Experimental Ischemia-Reperfusion-Induced Liver Injury. Annals of Surgery, 213, 137-142.
https://doi.org/10.1097/00000658-199102000-00008
[38] MacDonald, A.C. and Howlett, S.E. (2008) Differential Effects of the Sodium Calcium Exchange Inhibitor, KB-R7943, on Ischemia and Reperfusion Injury in Isolated Guinea Pig Ventricular Myocytes. European Journal of Pharmacology, 580, 214-223.
https://doi.org/10.1016/j.ejphar.2007.10.055
[39] Roseborough, G., Gao, D., Chen, L., et al. (2006) The Mitochondrial K-ATP Channel Opener, Diazoxide, Prevents Ischemia-Reperfusion Injury in the Rabbit Spinal Cord. The American Journal of Pathology, 168, 1443-1451.
https://doi.org/10.2353/ajpath.2006.050569
[40] Grisham, M.B., Granger, D.N. and Lefer, D.J. (1998) Modulation of Leukocyte-Endothelial Interactions by Reactive Metabolites of Oxygen and Nitrogen: Relevance to Ischemic Heart Disease. Free Radical Biology and Medicine, 25, 404-433.
https://doi.org/10.1016/S0891-5849(98)00094-X
[41] Bernardi, P. and Petronilli, V. (1996) The Permeability Transition Pore as a Mitochondrial Calcium Release Channel: A Critical Appraisal. Journal of Bioenergetics and Biomembranes, 28, 131-138.
https://doi.org/10.1007/BF02110643
[42] Halestrap, A.P., Kerr, P.M., Javadov, S. and Woodfield, K.Y. (1998) Elucidating the Molecular Mechanism of the Permeability Transition Pore and Its Role in Reperfusion Injury of the Heart. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1366, 79-94.
https://doi.org/10.1016/S0005-2728(98)00122-4
[43] Baines, C.P., Kaiser, R.A., Purcell, N.H., et al. (2005) Loss of Cyclophilin D Reveals a Critical Role for Mitochondrial Permeability Transition in Cell Death. Nature, 434, 658-662.
https://doi.org/10.1038/nature03434
[44] Yang, H., Li, R., Zhang, L., et al. (2019) P53-Cyclophilin D Mediates Renal Tubular Cell Apoptosis in Ischemia-Reperfusion-Induced Acute Kidney Injury. American Journal of Physiology-Renal Physiology, 317, F1311-F1317.
https://doi.org/10.1152/ajprenal.00072.2019
[45] Lemoine, S., Pillot, B., Augeul, L., et al. (2017) Dose and Timing of Injections for Effective Cyclosporine a Pretreatment before Renal Ischemia Reperfusion in Mice. PLOS ONE, 12, e0182358.
https://doi.org/10.1371/journal.pone.0182358
[46] Ji, X., Chu, L., Su, D., et al. (2023) MRPL12-ANT3 Interaction Involves in Acute Kidney Injury via Regulating MPTP of Tubular Epithelial Cells. iScience, 26, Article 106656.
https://doi.org/10.1016/j.isci.2023.106656
[47] Moldovan, L. and Moldovan, N.I. (2004) Oxygen Free Radicals and Redox Biology of Organelles. Histochemistry and Cell Biology, 122, 395-412.
https://doi.org/10.1007/s00418-004-0676-y
[48] Conrad, M. and Pratt, D.A. (2019) The Chemical Basis of Ferroptosis. Nature Chemical Biology, 15, 1137-1147.
https://doi.org/10.1038/s41589-019-0408-1
[49] Cabantchik, Z.I. (2014) Labile Iron in Cells and Body Fluids: Physiology, Pathology, and Pharmacology. Frontiers in Pharmacology, 5, Article 45.
https://doi.org/10.3389/fphar.2014.00045
[50] Zarjou, A., Bolisetty, S., Joseph, R., et al. (2013) Proximal Tubule H-Ferritin Mediates Iron Trafficking in Acute Kidney Injury. Journal of Clinical Investigation, 123, 4423-4434.
https://doi.org/10.1172/JCI67867
[51] Sun, X., Ou, Z., Xie, M., et al. (2015) HSPB1 as a Novel Regulator of Ferroptotic Cancer Cell Death. Oncogene, 34, 5617-5625.
https://doi.org/10.1038/onc.2015.32
[52] Lu, S., Song, Y., et al. (2021) Ferroportin-Dependent Iron Homeostasis Protects against Oxidative Stress-Induced Nucleus Pulposus Cell Ferroptosis and Ameliorates Intervertebral Disc Degeneration in Vivo. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 6670497.
https://doi.org/10.1155/2021/6670497
[53] Harrison, P.M. and Arosio, P. (1996) The Ferritins: Molecular Properties, Iron Storage Function and Cellular Regulation. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1275, 161-203.
https://doi.org/10.1016/0005-2728(96)00022-9
[54] Latunde-Dada, G.O. (2017) Ferroptosis: Role of Lipid Peroxidation, Iron and Ferritinophagy. Biochimica et Biophysica Acta (BBA)-General Subjects, 1861, 1893-1900.
https://doi.org/10.1016/j.bbagen.2017.05.019
[55] De Vries, B., Walter, S.J., Von Bonsdorff, L., et al. (2004) Reduction of Circulating Redox-Active Iron by Apotransferrin Protects against Renal Ischemia-Reperfusion Injury. Transplantation, 77, 669-675.
https://doi.org/10.1097/01.TP.0000115002.28575.E7
[56] Scindia, Y., Dey, P., Thirunagari, A., et al. (2015) Hepcidin Mitigates Renal Ischemia-Reperfusion Injury by Modulating Systemic Iron Homeostasis. Journal of the American Society of Nephrology, 26, 2800-2814.
https://doi.org/10.1681/ASN.2014101037
[57] Paller, M.S. and Hedlund, B.E. (1994) Extracellular Iron Chelators Protect Kidney Cells from Hypoxia/Reoxygenation. Free Radical Biology and Medicine, 17, 597-603.
https://doi.org/10.1016/0891-5849(94)90099-X
[58] Dragsten, P.R., Hallaway, P.E., Hanson, G.J., Berger, A.E., Bernard, B. and Hedlund, B.E. (2000) First Human Studies with a High-Molecular-Weight Iron Chelator. Translational Research, 135, 57-65.
https://doi.org/10.1016/S0022-2143(00)70021-7
[59] Bannai, S. (1986) Exchange of Cystine and Glutamate across Plasma Membrane of Human Fibroblasts. The Journal of Biological Chemistry, 261, 2256-2263.
https://doi.org/10.1016/S0021-9258(17)35926-4
[60] Koppula, P., Zhuang, L. and Gan, B. (2021) Cystine Transporter SLC7A11/XCT in Cancer: Ferroptosis, Nutrient Dependency, and Cancer Therapy. Protein & Cell, 12, 599-620.
https://doi.org/10.1007/s13238-020-00789-5
[61] Friedmann Angeli, J.P., Schneider, M., Proneth, B., et al. (2014) Inactivation of the Ferroptosis Regulator Gpx4 Triggers Acute Renal Failure in Mice. Nature Cell Biology, 16, 1180-1191.
https://doi.org/10.1038/ncb3064
[62] Ding, C., Ding, X., Zheng, J., et al. (2020) miR-182-5p and miR-378a-3p Regulate Ferroptosis in I/R-Induced Renal Injury. Cell Death & Disease, 11, Article No. 929.
https://doi.org/10.1038/s41419-020-03135-z
[63] Doll, S., Freitas, F.P., Shah, R., et al. (2019) FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature, 575, 693-698.
https://doi.org/10.1038/s41586-019-1707-0
[64] Wu, Y., Shi, H., Zheng, J., et al. (2023) Overexpression of FSP1 Ameliorates Ferroptosis via PI3K/AKT/GSK3β Pathway in PC12 Cells with Oxygen-Glucose Deprivation/Reoxygenation. Heliyon, 9, E18449.
https://doi.org/10.1016/j.heliyon.2023.e18449
[65] Madak, J.T., Bankhead, A., Cuthbertson, C.R., Showalter, H.D. and Neamati, N. (2019) Revisiting the Role of Dihydroorotate Dehydrogenase as a Therapeutic Target for Cancer. Pharmacology & Therapeutics, 195, 111-131.
https://doi.org/10.1016/j.pharmthera.2018.10.012
[66] Mao, C., Liu, X., Zhang, Y., et al. (2021) DHODH-Mediated Ferroptosis Defence Is a Targetable Vulnerability in Cancer. Nature, 593, 586-590.
https://doi.org/10.1038/s41586-021-03539-7
[67] Alexander, E.D., Aldridge, J.L., Burleson, T.S. and Frasier, C.R. (2023) Teriflunomide Treatment Exacerbates Cardiac Ischemia Reperfusion Injury in Isolated Rat Hearts. Cardiovascular Drugs and Therapy, 37, 1021-1026.
https://doi.org/10.1007/s10557-022-07341-z
[68] Baird, L. and Yamamoto, M. (2020) The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Molecular and Cellular Biology, 40, e00099-e00020.
https://doi.org/10.1128/MCB.00099-20
[69] Komatsu, M., Kurokawa, H., Waguri, S., et al. (2010) The Selective Autophagy Substrate P62 Activates the Stress Responsive Transcription Factor Nrf2 through Inactivation of Keap1. Nature Cell Biology, 12, 213-223.
https://doi.org/10.1038/ncb2021
[70] Shakya, A., McKee, N.W., Dodson, M., Chapman, E. and Zhang, D.D. (2023) Anti-Ferroptotic Effects of Nrf2: Beyond the Antioxidant Response. Molecules and Cells, 46, 165-175.
https://doi.org/10.14348/molcells.2023.0005
[71] Yang, J., Sun, X., Huang, N., et al. (2022) Entacapone Alleviates Acute Kidney Injury by Inhibiting Ferroptosis. The FASEB Journal, 36, e22399.
https://doi.org/10.1096/fj.202200241RR
[72] Huang, Y.B., Jiang, L., Liu, X.Q., et al. (2022) Melatonin Alleviates Acute Kidney Injury by Inhibiting NRF2/Slc7a11 Axis-Mediated Ferroptosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 4776243.
https://doi.org/10.1155/2022/4776243
[73] Sun, Z., Wu, J., Bi, Q. and Wang, W. (2022) Exosomal lncRNA TUG1 Derived from Human Urine-Derived Stem Cells Attenuates Renal Ischemia/Reperfusion Injury by Interacting with SRSF1 to Regulate ASCL4-Mediated Ferroptosis. Stem Cell Research & Therapy, 13, Article No. 297.
https://doi.org/10.1186/s13287-022-02986-x
[74] Shi, L., Song, Z., Li, Y., et al. (2023) miR-20a-5p Alleviates Kidney Ischemia/Reperfusion Injury by Targeting ACSL4-Dependent Ferroptosis. American Journal of Transplantation, 23, 11-25.
https://doi.org/10.1016/j.ajt.2022.09.003
[75] Li, X., Peng, X., Zhou, X., et al. (2023) Small Extracellular Vesicles Delivering lncRNA WAC-AS1 Aggravate Renal Allograft Ischemia-Reperfusion Injury by Inducing Ferroptosis Propagation. Cell Death & Differentiation, 30, 2167-2186.
https://doi.org/10.1038/s41418-023-01198-x
[76] Song, J., Sheng, J., Lei, J., Gan, W. and Yang, Y. (2022) Mitochondrial Targeted Antioxidant SKQ1 Ameliorates Acute Kidney Injury by Inhibiting Ferroptosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2223957.
https://doi.org/10.1155/2022/2223957
[77] Han, Y., Yuan, H., Li, F., et al. (2023) Ammidin Ameliorates Myocardial Hypoxia/Reoxygenation Injury by Inhibiting the ACSL4/AMPK/mTOR-Mediated Ferroptosis Pathway. BMC Complementary Medicine and Therapies, 23, Article No. 459.
https://doi.org/10.1186/s12906-023-04289-x
[78] Du, Y.W., Li, X.K., Wang, T.T., et al. (2023) Cyanidin-3-Glucoside Inhibits Ferroptosis in Renal Tubular Cells after Ischemia/Reperfusion Injury via the AMPK Pathway. Molecular Medicine, 29, Article No. 42.
https://doi.org/10.1186/s10020-023-00642-5
[79] Wang, H., Guo, S., Wang, B., et al. (2023) Carnosine Attenuates Renal Ischemia-Reperfusion Injury by Inhibiting GPX4-Mediated Ferroptosis. International Immunopharmacology, 124, Article 110850.
https://doi.org/10.1016/j.intimp.2023.110850
[80] Ma, L., Liu, X., Zhang, M., et al. (2023) Paeoniflorin Alleviates Ischemia/Reperfusion Induced Acute Kidney Injury by Inhibiting Slc7a11-Mediated Ferroptosis. International Immunopharmacology, 116, Article 109754.
https://doi.org/10.1016/j.intimp.2023.109754
[81] Jiang, G.-P., Liao, Y.-J., Huang, L.-L., Zeng, X.-J. and Liao, X.-H. (2021) Effects and Molecular Mechanism of Pachymic Acid on Ferroptosis in Renal Ischemia Reperfusion Injury. Molecular Medicine Reports, 23, Article No. 63.
https://doi.org/10.3892/mmr.2020.11704
[82] Qi, Y., Hu, M., Qiu, Y., et al. (2023) Mitoglitazone Ameliorates Renal Ischemia/Reperfusion Injury by Inhibiting Ferroptosis via Targeting mitoNEET. Toxicology and Applied Pharmacology, 465, Article 116440.
https://doi.org/10.1016/j.taap.2023.116440
[83] Jian, J., Wang, D., Xiong, Y., et al. (2023) Puerarin Alleviated Oxidative Stress and Ferroptosis during Renal Fibrosis Induced by Ischemia/Reperfusion Injury via TLR4/Nox4 Pathway in Rats. Acta Cirúrgica Brasileira, 38, e382523.
https://doi.org/10.1590/acb382523
[84] Pan, J., Zhao, J., Feng, L., Xu, X., He, Z. and Liang, W. (2023) Inhibition of USP14 Suppresses ROS-Dependent Ferroptosis and Alleviates Renal Ischemia/Reperfusion Injury. Cell Biochemistry and Biophysics, 81, 87-96.
https://doi.org/10.1007/s12013-022-01107-y
[85] Su, L., Jiang, X., Yang, C., et al. (2019) Pannexin 1 Mediates Ferroptosis that Contributes to Renal Ischemia/Reperfusion Injury. Journal of Biological Chemistry, 294, 19395-19404.
https://doi.org/10.1074/jbc.RA119.010949
[86] Zhong, D., Quan, L., Hao, C., et al. (2023) Targeting mPGES-2 to Protect against Acute Kidney Injury via Inhibition of Ferroptosis Dependent on P53. Cell Death & Disease, 14, Article No. 710.
https://doi.org/10.1038/s41419-023-06236-7
[87] Feng, R., Xiong, Y., Lei, Y., et al. (2022) Lysine-Specific Demethylase 1 Aggravated Oxidative Stress and Ferroptosis Induced by Renal Ischemia and Reperfusion Injury through Activation of TLR4/NOX4 Pathway in Mice. Journal of Cellular and Molecular Medicine, 26, 4254-4267.
https://doi.org/10.1111/jcmm.17444
[88] Ding, C., Wang, B., Zheng, J., et al. (2023) Neutrophil Membrane-Inspired Nanorobots Act as Antioxidants Ameliorate Ischemia Reperfusion-Induced Acute Kidney Injury. ACS Applied Materials & Interfaces, 15, 40292-40303.
https://doi.org/10.1021/acsami.3c08573
[89] Liu, Z., Liu, X., Yang, Q., Yu, L., Chang, Y. and Qu, M. (2020) Neutrophil Membrane-Enveloped Nanoparticles for the Amelioration of Renal Ischemia-Reperfusion Injury in Mice. Acta Biomaterialia, 104, 158-166.
https://doi.org/10.1016/j.actbio.2020.01.018
[90] Liu, Z., Li, Y., Li, C., Yu, L., Chang, Y. and Qu, M. (2021) Delivery of Coenzyme Q10 with Mitochondria-Targeted Nanocarrier Attenuates Renal Ischemia-Reperfusion Injury in Mice. Materials Science and Engineering: C, 131, Article 112536.
https://doi.org/10.1016/j.msec.2021.112536