根瘤菌与植物共生的研究进展
Advances in Research on Rhizobium and Plant Symbiosis
DOI: 10.12677/ije.2024.132018, PDF, HTML, XML, 下载: 66  浏览: 122 
作者: 胡楚婷:浙江师范大学生命科学学院,浙江 金华
关键词: 植物根系–微生物根瘤菌共生信号通路Plant Roots-Microorganisms Rhizobium Symbiosis Signaling Pathway
摘要: 植物的根系与其微共生体是一对亲密的盟友。许多植物物种会与各种微生物联系并产生相互作用,这种作用通常对双方是有利的。这些互利共生关系的一个共同特征是微生物能够从环境中获取限制植物生长的营养物质,并与植物交换这些营养物质,以获得植物光合作用产生的碳源。目前研究得最多的是豆科植物与固氮根瘤菌之间的共生关系,以及植物与丛枝菌根真菌(AMF)之间的共生关系。通过正向遗传学和反向遗传学方法,目前在植物根系与微生物共生关系方面发现了许多相关基因,这些发现有助于我们进一步对共生关系相关机制的理解。本文以根瘤菌共生为例,简要回顾了这种共生关系的一些研究成果,以期对植物与微生物的共生关系有更深入的理解,并为育种过程中提高共生固氮有效性的研究提供一定的思路。
Abstract: Plant roots and its microsymbiote are intimate allies. Many plant species are associated with various microorganisms, and usually form mutually beneficial relationships. A common feature of these mutualistic symbiosis relationships is the ability of microorganisms to take nutrients from the environment that limit plant growth and to exchange these nutrients with plants to obtain carbon sources produced by plant photosynthesis. At present, the most studied symbiotic relationships are between legumes and nitrogen-fixing rhizobium, and between plants and arbuscular mycorrhizal fungi (AMF). Through forward genetics and reverse genetics, many genes related to the symbiosis between plant roots and microorganisms have been discovered, and these findings contribute to our further understanding of the related mechanisms of symbiosis. Taking rhizobia symbiosis as an example, this paper briefly reviewed some research results of this symbiosis relationship, in order to have a deeper understanding of the symbiotic relationship between plants and microorganisms, and provide certain ideas for improving symbiotic nitrogen fixation in the breeding process.
文章引用:胡楚婷. 根瘤菌与植物共生的研究进展[J]. 世界生态学, 2024, 13(2): 134-142. https://doi.org/10.12677/ije.2024.132018

1. 引言

豆科植物(Fabaceae)广泛分布于全球各地,即使是在有机氮和矿质营养较为缺乏的环境中豆科植物也能存活,原因在于土壤中存在根瘤菌(Rhizobium)、丛枝菌根真菌(Arbuscular mycorrhizal fungi, AMF)这些可寄居于植物根部的微生物,在与植物共生过程中,能够帮助和促进植物获取环境中的养分:根瘤菌与植物共生产生的根瘤可将空气中的氮固定到植物体内,植物也可通过与AMF共生产生的菌根结构促进自身吸收土壤的水分和矿质元素。因此,豆科植物通常是自然生态系统和农业生态系统的关键物种。在过去的农业种植中常运用豆科植物的共生固氮作用增加土地的氮来源,而如今化肥的投入可更直接、更快速地提高土地的养分含量,贡献远高于生物固氮 ‎[1] 。然而,化肥制造成本较高,在田间的大量投入也带来了温室气体排放增加、水体富营养化等一系列环境问题。所以,生物固氮可以说是有利于农业可持续发展的氮来源途径。对于生物固氮的遗传学研究,揭示了植物与根瘤菌共生固氮过程的复杂性,以及固氮过程在不同植物谱系中的进化。本文旨在对根瘤菌在植物体内如何建立共生关系,以及如何生成菌丝、形成根瘤的分子机理研究进行回顾,以期能够对提高植物共生固氮作用的遗传育种研究提供一定帮助和启示。

2. 共生固氮的分子调控相关研究概述

2.1. 共生关系中共同的信号通路

在植株个体中,根系内部微生物群落的建成是通过根际微生物和寄主植物根系之间的化学信号交流来实现的。不同的微生物在植物根系中建立共生关系的过程既有差异,也有共性。在低氮或低磷环境中,植物根系释放的独脚金内酯和黄酮类化合物分别能够被AMF和根瘤菌识别 ‎[2] ‎[3] ,随后AMF产生菌根因子(Myc因子) ‎[4] ,根瘤菌产生结瘤因子(Nod因子) ‎[5] ,这些化合物被寄主植物的细胞膜上相应受体识别,激活一个共同的共生信号通路 ‎[6] ,然后该通路能够促进AMF入侵或根瘤形成。AMF共生是地球上最普遍的植物与微生物共生关系 ‎[7] ,在最近的国内研究中也发现,豆科植物用于识别Myc因子的信号通路也可识别结瘤因子,植物的根瘤菌共生信号通路由AMF共生信号通路演变而来 ‎[8] 。因此,也说明了不同的植物与微生物共生关系在系统发育进化过程中存在密切的联系。

根瘤菌与豆科植物前期的信号交流和识别是共生关系能否成功建立的关键步骤。研究表明,在Nod因子信号传导中,一些基因编码含有三个胞外赖氨酸结构域(LysM)的受体激酶起主要作用,该受体激酶有LysM I、LysM II两种形式。LysM I是具有激酶活性的激酶,包括百脉根(Lotus japonicas)中的Nod因子受体1 (NFR1),和蒺藜苜蓿(Medicago truncatula)中的LysM受体激酶3 (LYK3);LysM II是无激酶活性的激酶,包括百脉根中的NFR5和蒺藜苜蓿中的Nod因子受体(NFP)。两类激酶能够在细胞质膜和侵染丝膜上结合形成受体复合物,进而结合Nod因子 ‎[9] ‎[10] ‎[11] 。其中,百脉根中的NFR5能与细胞膜上富含亮氨酸重复序列的类受体激酶(LRR-RLK)形成异构体,即共生类受体激酶Lj SYMRK ‎[12] ,在蒺藜苜蓿中也有相应的含LRR的受体激酶DMI2 (或称NORK)。Lj SYMRK/MtDMI2是第一个被分离并发现的根瘤菌和AMF都必需的共生基因 ‎[13] ‎[14] 。这些受体下游的信号通路在根瘤菌共生与AMF共生两个过程中的组成成分也有共性。这一常见的共生信号通路已有广泛报道 ‎[15] ‎[16] 。如,常见的共生信号元件包括Nod因子诱导的E3泛素连接酶MtPUB1 (PLANT U-BOX PROTEIN1),该酶能够被Lj SYMRK的同源物MtDMI2以及胞内受体MtLYK3磷酸化 ‎[17] ‎[18] 。MtPUB1-1突变体增加了结瘤数量和感染事件,表明MtPUB1是根瘤形成的负调控因子 ‎[18] 。类共生受体激酶是一种所有共生关系形成所必需的类受体激酶,在豆科植物和放线菌属(Frankia)中,建立固氮共生关系所需的遗传物质通常是保守的,这也表明不同共生关系的信号传导机制存在共性 ‎[10] ‎[19] 。利用不同共生关系在遗传进化过程中的共性和联系,通过基因改造使得在非豆科植物中实现共生固氮过程具有可能性,He等 ‎[20] 用MtNFP和MtLYK3的胞外结构域替换水稻中同源的OsMYR1和OsCERK1胞外结构域,形成嵌合受体Mt/OsCE-RK1和Mt/OsMYR1,使得该转基因水稻识别Nod因子后具有更明显的结瘤共生信号出现。Rübsam等 ‎[21] 发现大麦中与NFR1和NFR5同家族的RLK4和RLK10受体在百脉根nfr1和nfr5双突变体内异位表达,可激发根瘤的形成并控制侵染过程,表明了谷类作物具有进行生物固氮的潜能,进而促进粮食生产。

2.2. 共生钙离子波动信号

植物细胞对Nod因子的感知可引起细胞膜去极化和离子流通量的改变,其中最主要的就是表皮细胞核和根毛细胞核中钙离子浓度的波动。钙离子浓度波动能够驱动根瘤形成以及微生物侵染相关基因的转录表达 ‎[22] 。钙离子通道可调节细胞内的钙浓度水平,钙浓度的高低可通过钙调蛋白(Calmodulin, CaM)等钙结合蛋白反映,CaM的构象会随着钙离子的结合而改变,从而改变其对其他蛋白质的亲和力,以传递共生信号。SYMPK和钙通道蛋白POLLUX是促使细胞核产生钙离子波动所必需的因子,通过研究具有钙波动缺陷的Nod突变体还发现另一些核膜蛋白能够促使钙离子波动信号的产生,包括钙通道Lj CASTOR和Lj POLLUX/MtDMI1 ‎[23] ‎[24] ;核孔蛋白亚基LjNUCLEOPORIN85 (LjNUP85)和LjNUP133 ‎[25] 等。细胞核内钙离子波动能够激活钙和钙调蛋白(CaM)依赖性蛋白激酶(CCaMK),作用于下游的基因表达,从而诱导根瘤的形成。在缺少根瘤菌诱导的情况下,获得CCaMK功能的突变体也能够产生根瘤,并能够促进菌根定殖的侵染结构形成 ‎[26] ,这表明仅仅激活CCaMK蛋白就足以诱导共生过程的发生。被激活的CCaMK蛋白使得共生信号通路上游的各因子功能冗余 ‎[27] ,这意味着激活CCaMK是共生信号通路中核钙波动作用的唯一目的。钙可通过两种不同的方式激活CCaMK:一是钙直接结合到具有CCaMK蛋白羧基端的3个EF结构域上;二是通过靠近激酶结构域的CaM结合域,与钙调蛋白(CaM)复合物中的钙结合 ‎[28] 。激活后的CCaMK会磷酸化一种对根瘤菌和菌根定殖至关重要的蛋白CYCLOPS/INTERACTING PROTEIN OFDMI3 (MtIPD3) (在L. japonicus中由CYCLOPS编码,在M. truncatula中由IPD3编码),转录因子Lj CYCLOPS/MtIPD3进一步通过调控基因表达,诱导根瘤形成 ‎[29] ‎[30] 。

2.3. 根瘤菌侵染及侵染线生长

根瘤菌附着在根毛细胞上,导致根毛卷曲形成侵染包,将根瘤菌包裹在其中,包裹着的根瘤菌分裂最终形成微菌落。在各种豆科植物中,根瘤菌进入根细胞有多种途径,既可通过根表面的裂缝直接进入根细胞,也可通过表皮根毛细胞中的管状侵染线侵入根细胞,后者是最常见的侵入方式 ‎[31] 。这两种根瘤菌进入细胞的方式都与Nod因子有关。此外,根瘤菌还可以通过细胞间隙以不依赖Nod因子的方式进入豆科植物的根系 ‎[32] 。侵染线来源于侵染包,由侵染初始部位根毛的细胞壁和细胞膜内陷极性生长形成,由于植物细胞壁被破坏和相邻的质膜的内陷,增殖的根瘤菌得以沿侵染线进入根细胞。根皮层细胞和中柱鞘细胞同时分裂,可诱发被成功侵染的细胞形成根瘤器官 ‎[33] 。

侵染线的生长方向指向根的皮层,这种极性生长保证了根瘤菌顺利到达侵染部位,对于根瘤菌的成功侵染十分重要。侵染线的极性生长通常受到植物的细胞分裂素等多种激素的正向或负向调控。植物的细胞分裂素信号通路调控侵染线的生长方向,在细胞分裂素信号通路缺陷突变体中侵染线的生长则是不定向的 ‎[34] 。研究表明,生长素对根瘤菌侵染起促进作用,生长素响应因子MtARF16a (AUXIN RESPONSE FACTOR)是侵染线生长所必需的,在MtARF16a突变体中可观察到侵染现象的减少,表明生长素参与根瘤菌侵染过程的调控 ‎[35] 。而赤霉素对侵染过程有一定的负向调控作用,这是由于调控Nod因子诱导的基因表达、根表皮侵染及结瘤的数量和密度的DELLA蛋白,对赤霉素信号途径具有负调控作用 ‎[24] 。

研究表明,在侵染线的顶端还存在一种被称为“侵染小体”的外囊复合体,对于侵染线向根瘤皮层的极性生长也具有重要作用 ‎[36] 。这种“侵染小体”的组成成分有调控侵染线发育的蛋白Mt VPY (Mt VAPYRIN)及与其互作的泛素连接酶Mt LIN (LUMPY INFECTION),和胞外复合体亚基MtEXO70 H4 (EXOCYST subunit H4) ‎[36] ‎[37] ‎[38] ,三者结合与胞吐建立联系,可能使得侵染线形成所需的细胞膜、细胞壁成分被精确运输到侵染线生长点上,而这三个因子中的任何一个突变都会导致侵染菌丝延伸的缺陷 ‎[39] 。Mtvpy和Mtlin的突变体都表现出根瘤数量产生较少,根瘤的表型呈白色、体积小且不会被侵染;而MtEXO70 H4的突变体则能够形成正常的能发挥功能的根瘤,这可能是遗传冗余的一种表现 ‎[36] ‎[38] 。根瘤菌侵染的模式具有多样性,深入研究并比较不同模式间的差异有助于我们更好理解共生微生物侵染的系统发育机制,进而更好地利用及改造植物与微生物形成的共生固氮过程。

2.4. 根瘤器官形成

随着根毛卷曲,植物能从土壤中捕获、包裹根瘤菌,然后根瘤菌会长出侵染线以供菌体进入根组织,根的中柱鞘细胞和皮层细胞重新进入细胞周期并开始分裂,从而触发根瘤原基的形成,细胞逐渐形成管状形态 ‎[32] ‎[40] 。根瘤组织由外皮层、中皮层、维管束和内皮层组成,内皮层包围着的中央区域是主要的侵染区。根瘤可分为来自于内皮层的不定型根瘤和来自于中、外皮层的确定型根瘤 ‎[41] 。在成熟的不定型根瘤中,可划分为发育区(分生组织)、感染区、固氮区和衰老区。在成熟的确定型根瘤中,中心区域仅由固氮区组成,并最终会转变为衰老区 ‎[33] 。根瘤的各种组织和区域的发育是中柱鞘、内皮层和中皮层连续的垂周和平周分裂的结果 ‎[33] 。对于功能性根瘤来说,比较重要的是一些分生组织细胞能够分化成更大的可适应共生体的多倍体细胞。

在根瘤形成过程中受到多种转录因子的调控。第一个被发现的共生基因是Nodule Inception (NIN),NIN可能是L. japonicus中的转录基因 ‎[42] 。一个转座子标记的NIN突变体在根瘤菌识别方面有缺陷,表现出过度的根毛卷曲,致使没有根瘤菌侵染或结瘤 ‎[42] 。NIN基因编码一种含有RWP-RK结构域的转录因子,能够调控对根瘤形成有正向或负向影响的多个基因和过程,在根瘤发育的不同阶段发挥作用,包括侵染线的初始发育、根瘤器官发生和根瘤数量的控制 ‎[43] 。NIN通过诱导Lj NPL (NODULE PECTATE LYASE)和核转录因子Y亚基A-1 (MtNF-YA1)基因来诱导侵染线发育起始 ‎[44] 。在Nod因子信号通路诱发的钙离子波动反应中,蛋白激酶Lj CCamK/MtDMI3磷酸化Lj CYCLOPS/MtIPD3,激活NIN表达,诱导侵染菌丝和根瘤形成 ‎[29] 。研究发现,一个功能冗余的类IPD3 (MtIPD3L)基因通过作用于MtDMI3的下游,调控根瘤的器官发生 ‎[45] 。作为与NSP2异质二聚体的一部分,NIN的表达也受到与结瘤共生通路相关的NSP1 GRAS (NSP, NODULATION SIGNALING PATHWAY; GRAS, SCARECROW)型转录因子的诱导 ‎[46] 。

苜蓿植物中,侵染线的形成和根瘤器官发生都依赖于乙烯响应因子1 (ERN1),该因子编码APETALA2/乙烯响应因子(AP2/ERF)这些转录因子。Mtern1突变体通过有限的皮层细胞分裂并形成侵染包,产生空的根瘤结构 ‎[47] 。与NIN类似,ERN1被CCaMK/CYCLOPS复合物诱导 ‎[48] ,并调控与细胞壁相关的ENOD11和ENOD12的表达,这对侵染菌丝的发育至关重要 ‎[49] 。当MtERN2 (MtERN1的一种密切同源物)被破坏时,虽然能够形成功能性根瘤,但它们会出现早衰表型 ‎[50] 。Nod因子对LjERN1的诱导依赖于表皮中的Nod因子受体LjNFR1、转录因子LjNSP2和Lj CYCLOPS,而不依赖于Lj NIN或LjNF-YA1 ‎[51] 。值得注意的是,Mt NIN通过限制MtENOD11 (EARLY NODULIN11)在根表皮中的表达来控制根瘤菌的侵染程度,表明NIN对ERN1起拮抗作用 ‎[52] 。对一种NIN等位基因突变体的分析进一步表明,Lj NIN对根瘤菌侵染起拮抗作用,但不影响根瘤器官形成 ‎[53] 。与NIN相似,核因子Y复合体(一种CCAAT-box结合的异质三聚体TF复合体,由NF-YA、NF-YB和NF-YC组成)调控根瘤器官发生的多个步骤。MtNF-YA1对根瘤分生组织的发生和维持至关重要 ‎[54] 。此外,LjNF-YA1和LjNF-YB1以依赖于Lj NIN的方式促进皮层细胞分裂 ‎[55] 。在菜豆(Phaseolus vulgaris)中,由pv NF-YAa、PvNF-YB7和PvNF-YC1组成的NF-Y异源三聚体不仅是侵染和根瘤器官形成所必需的因子,而且还在选择共生对象以提高固氮效率的过程中发挥重要作用 ‎[56] 。含有GRAS结构域的转录因子PvSIN1 (参与根瘤形成的Scarecrow-Like13)与PvNF-YC1相互作用,能够控制根瘤的数量、大小和侵染菌丝的形成 ‎[57] 。根瘤的形成及发育的分子机制较为复杂,目前对于该方面的认识仍有待进一步深入。

2.5. 氮的代谢和运输

调控植物的氨转运、同化和有机氮的输出是根瘤菌的主要核心功能。谷氨酰胺合成酶–谷氨酸合酶(GOGAT)循环催化铵同化为氨基酸。Ms NADH-GOGAT的RNAi降低了紫花苜蓿(Medicago sativa)根瘤的氨基酸含量(主要是谷氨酸、谷氨酰胺和丙氨酸),并且破坏了共生固氮过程 ‎[58] 。温带的豆科植物(包括M. truncatula和L. japonicus)的根瘤能够输出氨基酸物质,尤以谷氨酰胺和天冬酰胺居多,而热带的豆科植物(包括大豆Glycine max和菜豆P. vulgaris)的根瘤则能够合成并运输尿素,尤其是尿囊素和尿囊酸 ‎[59] 。在植物中,脲类化合物是由嘌呤氧化法合成的,谷氨酰胺磷酸核糖基焦磷酸酰胺转移酶(PRAT)则是催化嘌呤从头合成的第一步,而促进根瘤形成的PvPRAT3基因的表达沉默将会大大降低脲类化合物的产生,并对共生固氮能力有轻微的拮抗作用 ‎[60] 。含氮化合物转运体也是共生固氮有效性的关键成分,如LjNPF8.6,它是诱导根瘤形成的一个NPF家族成员,在LjNPF8.6突变体中表现出共生固氮减少 ‎[61] 。

3. 总结

共生微生物与植物形成的共生关系是互惠关系,植物利用以SYM为核心的信号途径与菌根真菌和根瘤菌共生。目前在植物根系–微生物互作共生方面的基因和机制的发现取得了很大的进展,尤其在根瘤菌共生方面,长期的进化使得植物与根瘤菌在建立共生和固定氮源过程的各个阶段都存在复杂的植物分子机理,许多研究发现多数共生固氮的基因在不同植物中具有同源性,这也使得在非豆科植物中形成共生固氮的关系成为可能,而由于基因家族的发展和新功能的进化,又使得各植物在共生固氮中的特异性表达,为植物具有高效固氮能力的改造提供了丰富的原材料。

4. 展望

目前,豆科植物的遗传学研究主要集中在某个物种的一个或两个基因型,但对每个物种的具有多种基因型的基因组测序后发现,由于包含一个物种所有个体序列的泛基因组比任何单个基因组大得多,所以如果特定基因型中添加或缺失序列,那么其功能将如何产生或调控共生固氮及其影响程度的大小,这些都是有待解决的问题。随着遗传工具的出现和发展,特别是基因组编辑能够在新基因型中实现有针对性地改变基因,将有助于解决这些问题。基因组编辑还将有助于发现,常出现功能冗余的多基因家族以及在传统方法中不太容易发生突变的小基因中的共生固氮功能。虽然基因组学在一定程度上已经阐明了存在于单个植物物种中的序列多样性,但植物育种学家多年来一直通过表型选择,利用这种基因多样性以改良植物性状;但育种过程中很难直接选择、改变作物或豆类饲料植物的共生固氮有效性大小。现在特定物种的成百上千种不同基因型的基因组序列的发现,为识别能够促进共生固氮有效性的基因和等位基因提供了可能性,例如,通过标记辅助或基因组选择方法来增强豆科植物的共生固氮作用。虽然多年来取得了显著的研究进展,但关于豆科植物共生固氮的遗传学和分子生物学以及各部分机制如何组合发挥作用等仍有待进一步理解。随着研究不断深入,将遗传知识转化为植物育种计划,优化豆科植物的共生固氮功能,并将其沿用到其他重要的非豆科作物中,都将可能实现。

参考文献

参考文献

[1] Sutton, M.A., Oenema, O., Erisman, J.W., et al. (2011) Too Much of a Good Thing. Nature, 472, 159-161.
https://doi.org/10.1038/472159a
[2] Akiyama, K., Matsuzaki, K. and Hayashi, H. (2005) Plant Sesquiterpenes Induce Hyphal Branching in Arbuscularmycorrhizal Fungi. Nature, 435, 824-827.
https://doi.org/10.1038/nature03608
[3] Besserer, A., Puech-Pagès, V., Kiefer, P., et al. (2006) Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria. PLOS Biology, 4, 1239-1247.
https://doi.org/10.1371/journal.pbio.0040226
[4] Kosuta, S., Hazledine, S., Sun, J.H., et al. (2008) Differential and Chaotic Calcium Signatures in the Symbiosis Signaling Pathway of Legumes. Proceedings of the National Academy of Sciences of the United States of America, 105, 9823-9828.
https://doi.org/10.1073/pnas.0803499105
[5] Dénarié, J., Debelle, F. and Prome, J.C. (1996) Rhizobium Lipo-Chitooligosaccharide Nodulation Factors: Signaling Molecules Mediating Recognition and Morphogenesis. Annual Review of Biochemistry, 65, 503-535.
https://doi.org/10.1146/annurev.bi.65.070196.002443
[6] Oldroyd, G.E.D. and Downie, J.A. (2008) Coordinating Nodule Morphogenesis with Rhizobial Infection in Legumes. Annual Review of Plant Biology, 59, 519-546.
https://doi.org/10.1146/annurev.arplant.59.032607.092839
[7] Remy, W., Taylor, T.N., Hass, H. and Kerp, H. (1994) Four Hundred-Million-Year-Old Vesicular Arbuscular Mycorrhizae. Proceedings of the National Academy of Sciences, 91, 11841-11843.
https://doi.org/10.1073/pnas.91.25.11841
[8] Wang, D., Dong, W., Murray, J., et al. (2022) Innovation and Appropriation in Mycorrhizal and Rhizobial Symbioses. Plant Cell, 34, 1573-1599.
https://doi.org/10.1093/plcell/koac039
[9] Zhang, X.C., Wu, X.L., Findley, S., et al. (2007) Molecular Evolution of Lysin Motif-Type Receptor-Like Kinases in Plants. Plant Physiology, 144, 623-636.
https://doi.org/10.1104/pp.107.097097
[10] Gherbi, H., Markmann, K., Svistoonoff, S., et al. (2008) SymRK Defines a Common Genetic Basis for Plant Root Endosymbioses with Arbuscular Mycorrhiza Fungi, Rhizobia, and Frankia bacteria. Proceedings of the National Academy of Sciences of the United States of America, 105, 4928-4932.
https://doi.org/10.1073/pnas.0710618105
[11] Maillet, F., Poinsot, V., André, O., et al. (2011) Fungal Lipochitooligosaccharide Symbiotic Signals in Arbuscular Mycorrhiza. Nature, 469, 58-63.
https://doi.org/10.1038/nature09622
[12] Antolín-Llovera, M., Ried, M.K. and Parniske, M. (2014) Cleavage of the Symbiosis Receptor-Like Kinase Ectodomain Promotes Complex Formation with Nod Factor Receptor 5. Current Biology, 24, 422-427.
https://doi.org/10.1016/j.cub.2013.12.053
[13] Endre, G., Kereszt, A., Kevei, Z., et al. (2002) A Receptor Kinase Gene Regulating Symbiotic Nodule Development. Nature, 417, 962-966.
https://doi.org/10.1038/nature00842
[14] Stracke, S., Kistner, C., Yoshida, S., et al. (2002) A Plant Receptor-Like Kinase Required for Both Bacterial and Fungal Symbiosis. Nature, 417, 959-962.
https://doi.org/10.1038/nature00841
[15] Oldroyd, G.E. (2013) Speak, Friend, and Enter: Signalling Systems That Promote Beneficial Symbiotic Associations in Plants. Nature Reviews Microbiology, 11, 252-263.
https://doi.org/10.1038/nrmicro2990
[16] Geurts, R., Xiao, T.T. and Reinhold-Hurek, B. (2016) What Does It Take to Evolve a Nitrogen-Fixing Endosymbiosis? Trends in Plant Science, 21, 199-208.
https://doi.org/10.1016/j.tplants.2016.01.012
[17] Mbengue, M., Camut, S., de Carvalho-Niebel, F., et al. (2010) The Medicago truncatula E3 Ubiquitin Ligase PUB1 Interacts with the LYK3 Symbiotic Receptor and Negatively Regulates Infection and Nodulation. Plant Cell, 22, 3474-3488.
https://doi.org/10.1105/tpc.110.075861
[18] Vernié, T., Camut, S., Camps, C., et al. (2016) PUB1 Interacts with the Receptor Kinase DMI2 and Negatively Regulates Rhizobial and Arbuscular Mycorrhizal Symbioses through Its Ubiquitination Activity in Medicago truncatula. Plant Physiology, 170, 2312-2324.
https://doi.org/10.1104/pp.15.01694
[19] Hocher, V., Alloisio, N., Auguy, F., et al. (2011) Transcriptomics of Actinorhizal Symbioses Reveals Homologs of the Whole Common Symbiotic Signaling Cascade. Plant Physiology, 156, 700-711.
https://doi.org/10.1104/pp.111.174151
[20] He, J., Zhang, C., Dai, H., et al. (2019) A LysM Receptor Heteromer Mediates Perception of Arbuscular Mycorrhizal Symbiotic Signal in Rice. Molecular Plant, 12, 1561-1576.
https://doi.org/10.1016/j.molp.2019.10.015
[21] Rübsam, H., Krönauer, C., Abel, N.B., et al. (2023) Nanobody-Driven Signaling Reveals the Core Receptor Complex in Root Nodule Symbiosis. Science, 379, 272-277.
https://doi.org/10.1126/science.ade9204
[22] Charpentier, M. and Oldroyd, G.E. (2013) Nuclear Calcium Signaling in Plants. Plant Physiology, 163, 496-503.
https://doi.org/10.1104/pp.113.220863
[23] Charpentier, M., Bredemeier, R., Wanner, G., et al. (2008) Lotus japonicus CASTOR and POLLUX Are Ion Channels Essential for Perinuclear Calcium Spiking in Legume Root Endosymbiosis. Plant Cell, 20, 3467-3479.
https://doi.org/10.1105/tpc.108.063255
[24] Kim, G.B., Son, S.U., Yu, H.J. and Mun, J.-H. (2019) MtGA2ox10 Encoding C20-GA2-Oxidase Regulates Rhizobial Infection and Nodule Development in Medicago truncatula. Scientific Reports, 9, Article No. 5952.
https://doi.org/10.1038/s41598-019-42407-3
[25] Saito, K., Yoshikawa, M., Yano, K., et al. (2007) Nucleoporin85 Is Required for Calcium Spiking, Fungal and Bacterial Symbioses, and Seed Production in Lotus japonicus. Plant Cell, 19, 610-624.
https://doi.org/10.1105/tpc.106.046938
[26] Takeda, N., Maekawa, T. and Hayashi, M. (2012) Nuclear-Localized and Deregulated Calcium-and Calmodulin-Dependent Protein Kinase Activates Rhizobial and Mycorrhizal Responses in Lotus japonicus. Plant Cell, 24, 810-822.
https://doi.org/10.1105/tpc.111.091827
[27] Hayashi, T., Banba, M., Shimoda, Y., et al. (2010) A Dominant Function of CCaMK in Intracellular Accommodation of Bacterial and Fungal Endosymbionts. Plant Journal, 63, 141-154.
https://doi.org/10.1111/j.1365-313X.2010.04228.x
[28] Tirichine, L., Imaizumi-Anraku, H., Yoshida, S., et al. (2006) Deregulation of a Ca2 /Calmodulin-Dependent Kinase Leads to Spontaneous Nodule Development. Nature, 441, 1153-1156.
https://doi.org/10.1038/nature04862
[29] Yano, K., Yoshida, S., Müller, J., et al. (2008) CYCLOPS, a Mediator of Symbiotic Intracellular Accommodation. Proceedings of the National Academy of Sciences of the United States of America, 105, 20540-20545.
https://doi.org/10.1073/pnas.0806858105
[30] Singh, S., Katzer, K., Lambert, J., et al. (2014) CYCLOPS, a DNA-Binding Transcriptional Activator, Orchestrates Symbiotic Root Nodule Development. Cell Host Microbe, 15, 139-152.
https://doi.org/10.1016/j.chom.2014.01.011
[31] Sprent, J.I. and James, E.K. (2007). Legume Evolution: Where Do Nodules and Mycorrhizas Fit in? Plant Physiology, 144, 575-581.
https://doi.org/10.1104/pp.107.096156
[32] Oldroyd, G.E., Murray, J.D., Poole, P.S. and Downie, J.A. (2011) The Rules of Engagement in the Legume-Rhizobial Symbiosis. Annual Review of Genetics, 45, 119-144.
https://doi.org/10.1146/annurev-genet-110410-132549
[33] Xiao, T.T., Schilderink, S., Moling, S., et al. (2014) Fate Map of Medicago truncatula Root Nodules. Development, 141, 3517-3528.
https://doi.org/10.1242/dev.110775
[34] Gage, D.J. (2004) Infection and Invasion of Roots by Symbiotic, Nitrogen-Fixing, Rhizobia during Nodulation of Temperate Legumes. Microbiology and Molecular Biology Reviews, 68, 280-300.
https://doi.org/10.1128/MMBR.68.2.280-300.2004
[35] Breakspear, A., Liu, C., Roy, S., et al. (2014) The Root Hair “Infectome” of Medicago truncatula Uncovers Changes in Cell Cycle Genes and Reveals Are Quirement for Auxin Signaling in Rhizobial Infection. Plant Cell, 26, 4680-4701.
https://doi.org/10.1105/tpc.114.133496
[36] Liu, C.-W., Breakspear, A., Stacey, N., et al. (2019) A Protein Complex Required for Polar Growth of Rhizobial Infection Threads. Nature Communications, 10, Article No. 2848.
https://doi.org/10.1038/s41467-019-10029-y
[37] Pumplin, N., Mondo, S.J., Topp, S., et al. (2010) Medicago truncatula Vapyrin Is a Novel Protein Required for Arbuscularmycorrhizal Symbiosis. Plant Journal, 61, 482-494.
https://doi.org/10.1111/j.1365-313X.2009.04072.x
[38] Murray, J.D., Muni, R.R.D., Torres-Jerez, I., et al. (2011) Vapyrin, a Gene Essential for Intracellular Progression of Arbuscular Mycorrhizal Symbiosis, Is also Essential for Infection by Rhizobia in the Nodule Symbiosis of Medicago truncatula. Plant Journal, 65, 244-252.
https://doi.org/10.1111/j.1365-313X.2010.04415.x
[39] Liu, J., Rutten, L., Limpens, E., et al. (2019) A Remote Cis-Regulatory Region Is Required for NIN Expression in the Pericycle to Initiate Nodule Primordium Formation in Medicago truncatula. Plant Cell, 31, 68-83.
https://doi.org/10.1105/tpc.18.00478
[40] Guan, D., Stacey, N., Liu, C.-W., et al. (2013) Rhizobial Infection Is Associated with the Development of Peripheral Vasculature in Nodules of Medicago truncatula. Plant Physiology, 162, 107-115.
https://doi.org/10.1104/pp.113.215111
[41] Hadri, A.-E., Spaink, H.P., Bisseling, T. and Brewin, N.J. (1998) Diversity of Root Nodulation and Rhizobial Infection Processes. In: Spaink, H.P., Kondorosi, A. and Hooykaas, P.J.J., Eds., The Rhizobiaceae, Springer, Dordrecht, 347-360.
https://doi.org/10.1007/978-94-011-5060-6_18
[42] Schauser, L., Roussis, A., Stiller, J. and Stougaard, J. (1999) A Plant Regulator Controlling Development of Symbiotic Root Nodules. Nature, 402, 191-195.
https://doi.org/10.1038/46058
[43] Liu, C.-W., Breakspear, A., Guan, D., et al. (2019) NIN Acts as a Network Hub Controlling a Growth Module Required for Rhizobial Infection. Plant Physiology, 179, 1704-1722.
https://doi.org/10.1104/pp.18.01572
[44] Laporte, P., Lepage, A., Fournier, J., et al. (2014) The CCAAT Box-Binding Transcription Factor NF-YA1 Controls Rhizobial Infection. Journal of Experimental Botany, 65, 481-494.
https://doi.org/10.1093/jxb/ert392
[45] Jin, Y., Chen, Z., Yang, J., et al. (2018) IPD3 and IPD3L Function Redundantly in Rhizobial and Mycorrhizal Symbioses. Frontiers in Plant Science, 9, Article 267.
https://doi.org/10.3389/fpls.2018.00267
[46] Hirsch, S., Kim, J., Muñoz, A., et al. (2009) GRAS Proteins form a DNA Binding Complex to Induce Gene Expression during Nodulation Signaling in Medicago truncatula. Plant Cell, 21, 545-557.
https://doi.org/10.1105/tpc.108.064501
[47] Middleton, P.H., Jakab, J., Penmetsa, R.V., et al. (2007) An ERF Transcription Factor in Medicago truncatula That Is Essential for Nod Factor Signal Transduction. Plant Cell, 19, 1221-1234.
https://doi.org/10.1105/tpc.106.048264
[48] Cerri, M.R., Wang, Q.H., Stolz, P., et al. (2017) The ERN1 Transcription Factor Gene Is a Target of the CCaMK/CYCLOPS Complex and Controls Rhizobial Infection in Lotus japonicus. New Phytologist, 215, 323-337.
https://doi.org/10.1111/nph.14547
[49] Andriankaja, A., Boisson-Dernier, A., Frances, L., et al. (2007) AP2-ERF Transcription Factors Mediate Nod Factor Dependent Mt ENOD11 Activation in Root Hairs via a Novel Cis-Regulatory Motif. Plant Cell, 19, 2866-2885.
https://doi.org/10.1105/tpc.107.052944
[50] Cerri, M.R., Frances, L., Kelner, A., et al. (2016) The Symbiosis-Related ERN Transcription Factors Act in Concert to Coordinate Rhizobial Host Root Infection. Plant Physiology, 171, 1037-1054.
https://doi.org/10.1104/pp.16.00230
[51] Kawaharada, Y., Nielsen, M.W., Kelly, S., et al. (2017) Differential Regulation of the Epr3 Receptor Coordinates Membrane-Restricted Rhizobial Colonization of Root Nodule Primordia. Nature Communications, 8, Article No. 14534.
https://doi.org/10.1038/ncomms14534
[52] Vernié, T., Kim, J., Frances, L., et al. (2015) The NIN Transcription Factor Coordinates Diverse Nodulation Programs in Different Tissues of the Medicago truncatula Root. Plant Cell, 27, 3410-3424.
https://doi.org/10.1105/tpc.15.00461
[53] Yoro, E., Suzaki, T., Toyokura, K., et al. (2014) A Positive Regulator of Nodule Organogenesis, Nodule Inception, Acts as a Negative Regulator of Rhizobial Infection in Lotus japonicus. Plant Physiology, 165, 747-758.
https://doi.org/10.1104/pp.113.233379
[54] Combier, J.P., de Billy, F., Gamas, P., Niebel, A. and Rivas, S. (2008) Trans-Regulation of the Expression of the Transcription Factor MtHAP2-1 by a uORF Controls Root Nodule Development. Genes &Development, 22, 1549-1559.
https://doi.org/10.1101/gad.461808
[55] Soyano, T., Kouchi, H., Hirota, A. and Hayashi, M. (2013) Nodule Inception Directly Targets NF-Y Subunit Genes to Regulate Essential Processes of Root Nodule Development in Lotus japonicus. PLOS Genetics, 9, e1003352.
https://doi.org/10.1371/journal.pgen.1003352
[56] Rípodas, C., Castaingts, M., Clúa, J., et al. (2019) The PvNF-YA1 and PvNF-YB7 Subunits of the Heterotrimeric NF-Y Transcription Factor Influence Strain Preference in the Phaseolus vulgaris-Rhizobium etli Symbiosis. Frontiers in Plant Science, 10, Article 221.
https://doi.org/10.3389/fpls.2019.00221
[57] Battaglia, M., Rípodas, C., Clúa, J., et al. (2014) A Nuclear Factor Y Interacting Protein of the GRAS Family Is Required for Nodule Organogenesis, Infection Thread Progression, and Lateral Root Growth. Plant Physiology, 164, 1430-1442.
https://doi.org/10.1104/pp.113.230896
[58] Cordoba, E., Shishkova, S., Vance, C.P. and Hernández, G. (2003) Antisense Inhibition of NADH Glutamate Synthase Impairs Carbon/Nitrogen Assimilation in Nodules of Alfalfa (Medicago sativa L.). Plant Journal, 33, 1037-1049.
https://doi.org/10.1046/j.1365-313X.2003.01686.x
[59] Smith, P.M. and Atkins, C.A. (2002) Purine Biosynthesis: Big in Cell Division, Even Bigger in Nitrogen Assimilation. Plant Physiology, 128, 793-802.
https://doi.org/10.1104/pp.010912
[60] Coleto, I., Trenas, A.T., Erban, A., et al. (2016) Functional Specialization of One Copy of Glutamine Phosphoribosyl Pyrophosphate Amidotransferase in Ureide Production from Symbiotically Fixed Nitrogen in Phaseolus vulgaris. Plant, Cell & Environment, 39, 1767-1779.
https://doi.org/10.1111/pce.12743
[61] Valkov, V.T., Rogato, A., Alves, L.M., et al. (2017) The Nitrate Transporter Family Protein LjNPF8.6 Controls the N-Fixing Nodule Activity. Plant Physiology, 175, 1269-1282.
https://doi.org/10.1104/pp.17.01187