Research on the Passivation Behavior of Hyper Duplex Stainless Steel S32707 in Acidified Seawater Solution

Binbin Zhang^{*}, Shucai Zhang, Zhixing Li, Sipeng Fan, Pengfei Chang, Jingxi Wu, Hao Feng, Zhouhua Jiang

School of Metallurgy, Northeastern University, Shenyang Liaoning Email: ^{*}binbin_z12@163.com

Received: May 2nd, 2018; accepted: May 30th, 2018; published: Jun. 6th, 2018

Abstract

The passivation behavior of hyper duplex stainless steel S32707 in acidified seawater solution was investigated by laser-scanning confocal microscopy, electrochemical workstation and XPS method. The structure and composition of the passivation film were analyzed in detail. The result shows that the passive zone width is about 800 mV_{SCE}, and pitting corrosion occurred when the corrosion potential increased to 900 mV_{SCE}. The pitting pit is located at the ferrite and austenite boundary with a depth of about 1.0 μ m. Under the applied potential of 100 mV_{SCE} and 700 mV_{SCE}, passive film surface is Ni-depleted and N-rich, and passive film is consisted of Fe₂O₃, Cr₂O₃, Cr(OH)₃, MoO₂, NiO oxides, CrN nitride and Fe, Cr, Mo, Ni metals. In addition, the thickness of the passive film decreases with increasing the applied potential.

Keywords

Hyper Duplex Stainless Steel, S32707, Passive Film, Acidified Seawater, XPS

特超级双相不锈钢S32707在酸化海水中的钝化 行为研究

张彬彬*,张树才,李志兴,范思鹏,常朋飞,吴敬玺,冯 浩,姜周华

东北大学冶金学院,辽宁 沈阳 Email: binbin_z12@163.com

收稿日期: 2018年5月2日; 录用日期: 2018年5月30日; 发布日期: 2018年6月6日

*通讯作者。

文章引用: 张彬彬, 张树才, 李志兴, 范思鹏, 常朋飞, 吴敬玺, 冯浩, 姜周华. 特超级双相不锈钢 S32707 在酸化海水中的钝化行为研究[J]. 冶金工程, 2018, 5(2): 47-54. DOI: 10.12677/meng.2018.52007

摘要

本文利用激光共聚焦显微镜、电化学工作站和XPS测试方法,研究了特超级双相不锈钢S32707在酸化海 水中的钝化行为,分析了钝化膜的结构和成分。结果表明在酸化海水溶液中,S32707具有约800 mVsce 宽的钝化区,电位升高到900 mVsce后,试样发生点蚀,点蚀坑位于铁素体和奥氏体相界处,深度大约 为1.0 μm。在100 mV_{SCE}和700 mV_{SCE}施加电位下,钝化膜表层贫Ni富N,钝化膜内包含Fe₃O₄、Fe₂O₃、 Cr₂O₃、Cr(OH)₃、MoO₂、NiO氧化物、CrN氮化物及Fe、Cr、Mo、Ni金属单质。提高施加电位,钝化膜 厚度减小。

关键词

特超级双相不锈钢,S32707,钝化膜,酸化海水,XPS

Copyright © 2018 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 0

Open Access

1. 引言

由于高含量的 Cr、Mo、N 等合金元素及等比例的铁素体和奥氏体,特超级双相不锈钢 S32707 具有 十分优异的耐腐蚀性能和力学性能,其耐点蚀当量指数(PREN = wt.% Cr + 3.3 wt.% Mo + 16 wt.% N)高达 48, 可应用于高温、高压、高氯离子等极端苛刻的服役环境, 如炼油、石化、化工等领域的管式热交换 器[1][2][3]。

目前关于特超级双相不锈钢的耐腐蚀行为及机理,国内外学者进行了大量的研究。黄盛等人[4]发现 特超级双相不锈钢 00Cr27Ni7Mo5N 在 1100℃固溶处理时展现出最佳的耐腐蚀性能。Li 等人[5]得出 2707 特超级双相不锈钢经铜绿假单胞菌 14 天浸泡后发生了微生物腐蚀。Jeon 和 Kim 等人[6] [7] [8]发现 W、 Cu、Ce 元素均能降低析出相的含量,从而提高 27Cr-7Ni 特超级双相不锈钢的耐腐蚀性能。然而,这些 研究主要局限于析出相对钢耐腐蚀性能的影响,并未对钢的钝化膜结构、成分和厚度进行详细表征。不 锈钢的耐腐蚀性能主要取决于钝化膜保护基体不受侵蚀性离子破坏的能力,因此研究特超级双相不锈钢 钝化膜组成对探索其耐蚀性机理具有重要意义。

本文利用激光共聚焦显微镜、电化学工作站和 XPS 测试方法,研究了特超级双相不锈钢 S32707 在 酸化海水中的钝化行为,分析了钝化膜的结构和成分。

2. 实验材料与方法

实验用特超级双相不锈钢 S32707 采用 25 kg 真空感应炉熔炼, 经热锻、热轧制备成 5 mm 厚的板材, 其化学成分如表 1 所示。将热轧板在 1200℃固溶处理 1 h 后水淬,以获得等体积分数的铁素体(a)相和奥 氏体(y)相。固溶处理后的试样在砂纸上湿磨到 2000 目后抛光,采用 30%的 KOH 溶液对抛光试样进行电 解腐蚀,电压为 5V,电解时间为 2~10 s。利用 Olympus OLS4100 激光共聚焦显微镜观察腐蚀后试样的 微观组织形貌和点蚀坑 3D 形貌及深度分布。采用 Gamry Reference 600 电化学工作站进行动电位极化测 试,以电位扫描速率 0.3333 mV/s 从相对开路电位-200 mV 正向扫描到过钝化电位以上。腐蚀溶液均选

Table 1. Chemical composition of S32707 used in the present study (wt·%) 表 1. 实验钢的化学成分(wt·%)													
	С	Cr	Ni	Мо	Ν	Р	S	Mn	Cu	Co	Si	Fe	
S32707	0.0044	26.83	7.14	4.88	0.39	0.005	0.003	1.11	0.98	0.97	0.42	Bal.	

用酸化海水[9],溶液组成为 0.5M H₂SO₄ + 0.5M NaCl,温度为 25℃。为了减小实验误差,每组实验采用 4 个平行试样。采用多功能表面分析系统 ESCALAB250 分析 S32707 在酸化海水溶液中不同施加电位(100 mV_{SCE} 和 700 mV_{SCE})下表面钝化膜成分与元素深度分布。实验采用 Al Kα (1486.6 eV)产生 X 射线,通过 能量为 50 eV,能量阶梯为 0.05 eV,实验数据采用 C1s 结合能 284.6 eV 定标。

3. 实验结果与分析

3.1. S32707 的金相组织

图 1 为特超级双相不锈钢 S32707 固溶后的金相组织。可以看出, S32707 中主要包含两种颜色的相, 其中黑色相为铁素体(*a*),较亮的相为奥氏体(*y*)。奥氏体呈岛状或长条状均匀分布于铁素体中,两相比例 较均匀。利用 EDS 对 *a* 相和 *y* 相的成分进行分析,结果如表 2 所示。可以看出,两相中合金元素分布不 均匀,*a* 相中富含 Cr、Mo、Si 等铁素体形成元素,*y* 相富含 Ni、N、Cu、Co 等奥氏体形成元素。两相 元素的不均匀性导致其耐腐蚀性能产生差异,*y* 相中 N 元素集会提高其耐局部腐蚀性能,由耐点蚀当量 计算公式可以看出 N 元素对材料点蚀当量值的贡献要远远高于 Cr、Mo 等传统提高材料耐蚀性的合金元 素[10]。

3.2. S32707 的动电位极化行为

图 2 为 S32707 在酸化海水溶液中的动电位极化曲线。可以看出极化曲线存在较宽的钝化区(约 800 mV_{SCE}),进入钝化区后,随着电位的增加,腐蚀电流密度缓慢增加并且保持在较低的水平,这个过程中试样生成钝化膜,钝化膜的形成阻碍试样发生进一步腐蚀,起到良好的保护作用[11][12][13]。当电位升高到约 900 mV_{SCE}时,腐蚀电流密度迅速增加,说明钝化膜被破坏,试样发生点蚀。

经动电位极化后,S32707 试样表面发生点蚀,利用激光共聚焦显微镜对点蚀坑的形貌和深度进行分析,结果如图 3 所示。由图可以直观地看出,点蚀坑发生在铁素体和奥氏体相界处,点蚀坑的深度大约为 1.0 µm。

3.3. S32707 的钝化膜结构分析

图 4 为 S32707 在 100 mV_{SCE} 和 700 mV_{SCE} 施加电位下酸化海水溶液中形成的钝化膜表面的全谱扫描。可以看出,试样钝化膜表面均产生 Fe、Cr、O、N、C、Mo 元素的峰,且 Fe、Cr、O、C 元素的峰值较高,由于 C 强峰来源于真空的污染[14],因此钝化膜表面主要由 Fe、Cr 和 O 元素组成。

为了进一步分析各元素的化学状态,对溅射 10 s 后钝化膜中 Fe、Cr、N、Mo、Ni 和O 元素进行窄 区高分辨扫描,所得光谱采用 Shirley 作为扣除背底函数,结果如图 5 所示。图 5(a)为 Fe2p_{3/2}的 XPS 图 谱,可见 100 mV_{SCE}和 700 mV_{SCE}施加电位下该图谱均分为 3 个峰,分别对应结合能 706.9 eV、708.3 eV 和 710.9 eV,根据 XPS 结合能数据库[15]报道的结合能数值可知,3 个峰分别对应 Fe_{met}、Fe₃O₄与 Fe₂O₃, 说明钝化膜中 Fe 主要以 Fe²⁺和 Fe³⁺的形式存在。图 5(b)为 Cr2p_{3/2}的 XPS 图谱,其在两种施加电位下都 分为 3 个峰,分别对应 Cr_{met} (574.0 eV)、Cr₂O₃ (575.5 eV)和 Cr(OH)₃ (577.4 eV),钝化膜中 Cr 主要以 Cr₂O₃ 为主,从而提高钝化膜的稳定性。图 5(c)为 N1s 和 Mo3p_{3/2}的 XPS 图谱,其中 N1s 图谱对应 CrN (397.1 eV),

Figure 1. Metallographic microstructure of S32707 图 1. S32707 的金相组织

Figure 2. Potentiodynamic polarization curves of S32707 in acidified seawater 图 2. S32707 在酸化海水溶液中的动电位极化曲线

图 2.552/0/ 住骸化海水冷波中的幼电位极化曲线

 Table 2. Chemical composition of ferrite and austenite phases (wt·%)

 表 2. 铁素体和奥氏体相的化学成分(wt·%)

	Cr	Ni	Мо	Ν	Cu	Со	Si
<i>α</i> 相	28.42	5.59	4.25	0	0.69	1.02	0.42
y 相	25.33	7.27	2.49	0.35	0.95	1.34	0.37

可能是由于铬和氮的选择性析出而形成[16], Mo3p_{3/2}图谱对应 Mo_{met} (393.9 eV)。图 5(d)为 Mo3d_{5/2}的 XPS 图谱,在两种施加电位下,图谱均包含 2 个峰,分别为 Mo_{met} (227.6 eV)和 MoO₂ (230.9 eV),研究表明, 钼酸根在酸性环境中不稳定,在强酸性环境中只有 MoO₃ 能稳定存在,在中性环境中只有 MoO₂ 能稳定

Figure 3. Morphology and depth distribution images of corrosion pit after potentiodynamic polarization 图 3. 动电位极化后点蚀坑形貌和深度分布图

Figure 4. XPS wide scan spectrum of passive film 图 4. 钝化膜 XPS 全谱扫描

存在[17]。钝化膜中仅存在金属 Mo 和 MoO₂表明,钝化膜周围可能趋于偏中性环境。另外, Mo 通过生成难溶的钼氧化物,阻碍物质穿过钝化膜,从而降低腐蚀速率。图 5(e)为 Ni2p_{3/2}的 XPS 图谱,可以看出, 100 mV_{SCE} 和 700 mV_{SCE} 下钝化膜中均包含 Ni_{met} (852.8 eV)和 NiO (853.9 eV)。图 5(f)为 O1s 的 XPS 图谱, 由图可知,钝化膜中包含 O²⁻ (530.5 eV)和 OH⁻ (531.5 eV), 700 mV_{SCE} 下还包含少量 H₂O (534.0 eV),其中 O²⁻为主要组成,对应 Fe₃O₄、Fe₂O₃、Cr₂O₃、MoO₂、NiO 和 H₂O, OH⁻对应 Cr(OH)₃。

图 6 是 100 mV_{SCE} 和 700 mV_{SCE} 施加电位下钝化膜成分随蚀刻时间变化。可以看出,在两种施加电位下,Fe、Cr 含量均随刻蚀时间先急剧增加后逐渐趋于稳定,O 含量变化规律相反,然而,两种施加电

Figure 5. XPS narrow zone scan of passivation film: (a) Fe; (b) Cr; (c) N; (d) Mo; (e) Ni; (f) O 图 5. 钝化膜 XPS 窄区高分辨扫描

Figure 6. XPS sputtering depth profiles of the alloying elements in passive film at different applied potential: (a) 100 mV_{SCE}; (b) 700 mV_{SCE}
 图 6. 不同施加电位下钝化膜成分随蚀刻时间变化

位下 Fe、Cr 和 O 含量稳定的时间不同,100 mV_{SCE} 时刻蚀 40 s 后达到稳定,而 700 mV_{SCE} 时刻蚀 30 s 即 稳定,元素稳定位置为钝化膜/基体界面,因此提高施加电位时钝化膜厚度减小。另外,Ni 元素深度分布 显示钝化膜表层 Ni 显著贫化,蚀刻 10 s 时含量达到最大,说明 Ni 主要富集在钝化膜内层。Mo 含量随 蚀刻时间延长逐渐增大并达到稳定。N 含量随蚀刻时间延长逐渐降低,说明 N 元素在钝化膜表层富集。

4. 结论

1) 在酸化海水溶液中,S32707 具有约 800 mV_{SCE} 宽的钝化区,电位升高到 900 mV_{SCE} 后,试样发生 点蚀,点蚀坑发生在铁素体和奥氏体相界处,其深度大约为 1.0 μm。

2) 在 100 mV_{SCE}和 700 mV_{SCE}施加电位下,钝化膜表层贫 Ni 富 N,钝化膜内包含 Fe₃O₄、Fe₂O₃、Cr₂O₃、Cr(OH)₃、MoO₂、NiO 氧化物、CrN 氮化物及 Fe、Cr、Mo、Ni 金属单质。

3) 提高施加电位, 钝化膜厚度减小。

基金项目

国家自然科学基金面上项目(51774074),沈阳市双百工程(重大科技成果转化)(Z17-5-003)。

参考文献

- [1] Zhang, B.B., Jiang, Z.H., Li, H.B., Zhang, S.C., Feng, H. and Li, H.(2017) Precipitation Behavior and Phase Transformation of Hyper Duplex Stainless Steel UNS S32707 at Nose Temperature. *Materials Characterization*, 129, 31-39. <u>https://doi.org/10.1016/j.matchar.2017.04.018</u>
- [2] Li, H.B., Jiao, W.C., Feng, H., Li, X.X., Jiang, Z.H., Li, G.P., Wang, L.X., Fan, G.W. and Han, P.D. (2016) Deformation Characteristic and Constitutive Modeling of 2707 Hyper Duplex Stainless Steel under Hot Compression. *Metals*, 6, 223. <u>https://doi.org/10.3390/met6090223</u>
- [3] Li, H.B., Zhou, E.Z., Zhang, D.W., Xu, D.K., Xia, J., Yang, C.G., Feng, H., Jiang, Z.H., Li, X.G., Gu, T.Y. and Yang, K. (2016) Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine *Pseudomonas aeruginosa* Biofilm. *Scientific Reports*, 6, 20190.
- [4] 黄盛, 宋志刚, 郑文杰, 尹建成. 固溶处理温度对 00Cr27Ni7Mo5N 不锈钢组织及腐蚀性能的影响[J]. 金属热处 理, 2011, 36(12): 44-49.
- [5] Li, H.B., Zhou, E.Z., Zhang, D.W., Xu, D.K., Xia, J., Yang, C.G., Feng, H., Jiang, Z.H., Li, X.G., Gu, T.Y. and Yang, K. (2016) Microbiologically Influenced Corrosion of 2707 Hyper-duplex Stainless Steel by Marine Pseudomonas Ae-

ruginosa Biofilm. Scientific Reports, 6, 20190. https://doi.org/10.1038/srep20190

- [6] Jeon, S.H., Kim, S.T., Lee, I.S., Kim, J.S., Kim, K.T. and Park, Y.S. (2012) Effects of W Substitution on the Precipitation of Secondary Phases and the Associated Pitting Corrosion in Hyper Duplex Stainless Steels. *Journal of Alloys and Compounds*, 544, 166-172. <u>https://doi.org/10.1016/j.jallcom.2012.07.129</u>
- [7] Jeon, S.H., Kim, S.T., Lee, I.S. Kim, J.S. Kim, K.T. and Park, Y.S. (2013) Effects of Cu on the Precipitation of Intermetallic Compounds and the Intergranular Corrosion of Hyper Duplex Stainless Steels. *Corrosion Science*, 66, 217-224. <u>https://doi.org/10.1016/j.corsci.2012.09.023</u>
- [8] Jeon, S.H., Hur, D.H., Kim, H.J. and Park, Y.S. (2015) Effect of Ce Addition on the Precipitation of Deleterious Phases and the Associated Intergranular Corrosion Resistance of 27Cr-7Ni Hyper Duplex Stainless Steels. *Corrosion Science*, 90, 313-322. <u>https://doi.org/10.1016/j.corsci.2014.10.018</u>
- [9] Szklarska, S.Z. and Mankowsk, J. (1972) Effect of Temperature on the Kinetics of Development of Pits in Stainless Steel in 0.5n NaCl+0.5n H₂SO₄Solution. *Corrosion Science*, **12**, 925-928. https://doi.org/10.1016/S0010-938X(72)80100-8
- [10] 王松涛. 高氮奥氏体不锈钢的力学行为及氮的作用机理[D]: [博士学位论文]. 沈阳: 中国科学院金属研究所, 2008.
- [11] 文怀梁, 董俊华, 柯伟, 陈文娟, 阳靖峰, 陈楠. 模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化 腐蚀倾向的影响[J]. 金属学报, 2014, 50(3): 275-284.
- [12] 刘杏,周建江,李光福,杨武. 溶解氧对 X70 管线钢在高 pH 值溶液中的电化学行为和 SCC 敏感性的影响[J]. 腐 蚀与防护, 2008, 29(6): 305-310.
- [13] Parkins, R.N. (1998) Predictive Approaches to Stress Corrosion Cracking Failure. Corrosion Science, 20, 151-157.
- [14] 向洪亮, 黄伟林, 刘东, 何福善. 29Cr 超级双相不锈铸钢表面腐蚀 XPS 分析[J]. 腐独科学与防护技术, 2011, 23(4): 303-312.
- [15] Database for Surface Spectroscopies as XPS, AES and UPS. http://www.lasurface.com
- [16] Devaux, R., Vouagner, D., Becdelievre, A.M. and Duret-Thual, C. (1994) Electrochemical and Surface Studies of the Ageing of Passive Layers Grown on Stainless Steel in Neutral Chloride Solution. *Corrosion Science*, 36, 171-186. <u>https://doi.org/10.1016/0010-938X(94)90118-X</u>
- [17] 冯浩. 高钼高氮超级奥氏体不锈钢在典型极端环境中的腐蚀行为研究[D]: [硕士学位论文]. 沈阳: 东北大学, 2014.

Hans 汉斯

知网检索的两种方式:

- 打开知网页面 <u>http://kns.cnki.net/kns/brief/result.aspx?dbPrefix=WWJD</u>下拉列表框选择: [ISSN],输入期刊 ISSN: 2373-1478,即可查询
 打开知网首页 <u>http://cnki.net/</u>
- 左侧"国际文献总库"进入,输入文章标题,即可查询

投稿请点击: <u>http://www.hanspub.org/Submission.aspx</u> 期刊邮箱: <u>meng@hanspub.org</u>