Reservoir Feature of the Middle-Deep Strata in Suning-Dawangzhuang District of Jizhong and Its Influencing Factors

Yibing Wei¹, Jianping Wu², Hongxia Wang²

¹School of Geosciences, Yangtze University, Wuhan Hubei ²Research Institute of Exploration and Development of Huabei Oil Company, Renqiu Hebei Email: 1121788138@qq.com

Received: Dec. 10th, 2015; accepted: Dec. 28th, 2015; published: Dec. 31st, 2015

Copyright © 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

© Open Access

Abstract

The reservoir physical characteristic and its influencing factors are studied in detail based on the core observation and the analysis of sedimentary microfacies and reservoir properties such as thin section, casting thin sections, mercury intrusion data etc. The research shows that the rock types of Suning-Dawangzhuang district of Jizhong are mainly siltstone and fine sandstone, which are characterized by fine grain size, medium-good sorting and sub-rounded. The ingredient of sandstone is mainly arcose. The reservoir physical characteristic is poor, middle-low porosity and middle-low permeability. The main pore type is secondary pore which is formed by the dissolution of feldspar and debris, the second is primary porosity. Reservoir space is influenced mainly by sedimentary process, diagenesis, and formation pressure. The research shows that the sandstone of highly dissolution and weak compaction in the middle of river has good reservoir properties.

Keywords

Raoyang Depression, Reservoir Physical Characteristic, Influencing Factors, Sedimentary Process

冀中肃宁 - 大王庄地区中深层储层特征及控制 因素

魏一冰1, 吴健平2, 王宏霞2

¹长江大学地球科学学院,湖北 武汉 ²华北油田公司勘探开发研究院,河北 任丘 Email:1121788138@gg.com

收稿日期: 2015年12月10日; 录用日期: 2015年12月28日; 发布日期: 2015年12月31日

摘要

以对取芯井段的观测为基础,结合沉积微相及岩石薄片、铸体薄片、压汞数据等储层物性资料的对比分 析,对肃宁-大王庄地区中深层砂岩储层的储层特征及储层控制因素作了较为详细的研究。研究表明饶 阳凹陷肃宁-大王庄地区中深层储层以粉砂岩和细砂岩沉积为主,整体粒度较细,颗粒分选中-好,磨 圆以次圆状为主。砂岩成分主要是长石类砂岩。储层物性较差,属于中低孔-中低渗储层。储层储集空 间以长石及易溶岩屑受到溶蚀作用形成的次生孔隙为主,其次为原生孔隙。储集空间的发育主要受沉积 作用、成岩作用、地层压力的影响。结果表明,位于水下分流河道弱压实、强溶蚀的砂岩是良好的储层。

关键词

饶阳凹陷,储层特征,控制因素,沉积作用

1. 引言

饶阳凹陷是冀中坳陷中的一个次级构造单元,位于冀中坳陷中部,东临献县凸起,南临新河凸起, 西到高阳低凸起,北接霸县凹陷,面积约 5600 km²,是冀中坳陷最大的凹陷,也是冀中坳陷油气最富集、 勘探成效最高的凹陷[1]。肃宁 - 大王庄地区处于饶阳凹陷中央隆起带的中部,东临留西构造带,西临大 王庄西次洼槽,北靠河间洼槽,南到留 91 井,勘探面积近 400 km² (图 1)。

该区沉积了巨厚的古近系陆相地层,厚度超过 2500 m。在沙三段上亚段发育了1 套优质湖相烃源岩, 具备良好的生烃基础,蕴藏了丰富的油气资源[2]。本文研究的中深层储层包括了沙二段和沙三段(3000 m 以下,重点 3000~3500 m)。根据操应长等人的研究,饶阳凹陷古近系中深层储层岩石类型是以长石砂岩 和岩屑质长石砂岩为主,储层物性较差,受沉积作用等多方面的影响的控制。本文选取了钻遇沙二段及 沙三段的 54 口井,通过大量的岩心观察,结合岩石薄片、铸体薄片、物性分析、压汞分析等资料对研究 区的深层储层碎屑岩储层进行详细分析。

2. 储层特征

2.1. 岩石学特征

野外地表露头和现场岩心表明,中深层砂岩储层以粉砂岩和细砂岩沉积为主,图 2 为典型岩心照片。 通过对本区 39 口井的薄片资料的统计得出,不同层位储层砂岩岩石学特征大体一致,但具有一定的差异。 沙二段及沙三段岩性都以长石砂岩为主,同时含有少量的岩屑长石砂岩。其中沙二段长石含量更高,沙 三下亚段含有少量的岩屑质石英砂岩及岩屑砂岩(图 3)。

整体上中深层储层岩屑类成分以酸性喷出岩类、沉积岩类及变质岩类为主,此外还有少量的凝灰岩 和其它岩类。主要填隙物以方解石、白云岩为主,其次为粘土矿物和泥质(表 1)。

研究区中深层储层岩石的结构成熟度较高;颗粒以次圆为主,次尖-次圆状次之,磨圆度较好;分选为中-好;胶结疏松-中等;胶结类型以孔隙式为主,接触-孔隙式次之。

Figure 1. Tectonic background map of Suning-Dawangzhuang district 图 1. 肃宁 - 大王庄地区区域构造背景图

Figure 2. Typical core photos of middle-deep strata. (a) Grayish fine sandstones with oil patch, L425 well, 3460 m; (b) Brown fine sandstones with oil patch, N201 well, 3753.6 m; (c) Gray-brown and oil-bearing medium sandstones, L101 well, 3633.7 m

图 2. 中深层储层典型岩心照片。(a) 留 425 3460 m, 浅灰色油斑细砂岩; (b) 宁 201 3753.6 m, 棕褐色油 斑细砂岩; (c) 留 101 3633.7 m, 灰褐色含油中砂岩

Figure 3. Triangular diagram for classification of reservoir in middle-deep strata. (a) The second member of the Shahejie formation; (b) The upper third sub-member of the Shahejie Formation; (c) The lower third sub-member of the Shahejie Formation

图 3. 中深层储层岩石类型三角图。(a) 沙二段,(b) 沙三上亚段,(c) 沙三下亚段

Table 1. Reservoir petrography of middle-deep strata 表 1. 中深层储层岩石学特征表											
	岩石学特征										
层位	陆源碎屑(%)			主要填隙物(%)			样品				
	石英	长石	岩屑	方解石	白云石	粘土矿物	数量				
Es2	<u>43~54.1</u> 48.3	<u>38.2~48.1</u> 42.9	<u>5.5~12.5</u> 8.2	$\frac{4.3 \sim 22.8}{12}$	<u>1.2~15.5</u> 5.7	<u>0~5.8</u> <1	120				
Es3上	$\frac{43.2 \times 56.8}{50.5}$	<u>34.7~47.7</u> 41	<u>5.2~11</u> 7.5	<u>2.2~21.9</u> 9.5	<u><1~15.9</u> 5.2	< <u><1~2.8</u> 1.4	248				
Es3 下	<u>41.2~61</u> 47.7	<u>23~44.7</u> 37	<u>6.5~28.3</u> 13.1	<u><1~22.6</u> 8.2	$\frac{1 \sim 17}{4.2}$	<1	159				

2.2. 储集空间类型

根据岩心观察、岩石铸体薄片观察等,研究区中深层储层储集空间有次生孔隙、混合孔隙、原生孔 隙及少量和微裂缝,以次生孔隙为主(图 4)。

① 次生孔隙 溶解成因次生孔隙是研究区中深层储层次生孔隙的最主要成因类型,中深层储层储集 空间主要以粒间溶扩孔隙为主,同时可见长石、岩屑等强烈溶蚀而形成的粒内溶孔。

② 混合孔隙 本区中深层的原生孔隙是由部分原生孔隙和部分次生孔隙混合组成,基本上是原生孔 隙与颗粒边缘遭受溶蚀形成的次生孔隙组合或是原生孔隙与胶结物溶解形成的次生孔隙组合,这类孔隙 形状不规则,分布不均匀,其中原生孔隙和次生孔隙的相对含量往往难以估计。

③ 原生孔隙 研究区中深层的原生孔隙主要是压实胶结残余原生孔隙,并且普遍发生油气充注,含 量较少,较难发现。

④ 微裂缝 裂缝主要有构造缝,石英、长石等脆性颗粒受强烈压实而形成的破裂缝,由于收缩作用 而在刚性颗粒与塑性杂基接触处形成的收缩缝等。

2.3. 孔隙结构特征

通过对研究区 5 口井 38 个压汞数据进行统计分析后得到如下表格(表 2)。根据研究区中深层储层压 汞资料,把储层的孔隙结构分为三大类五小类,其中ⅠA 类孔隙结构最好,Ⅲ类结构最差。通过统计储 层孔隙结构的分布特征可知,研究区中深层储层孔隙结构均以 I B 类、II A 类及 II B 类孔隙结构为主(图 5), 其中 I A 类(中高孔高渗型)百分含量为 5%, I B 类(中孔中渗型储层)、II A (中孔低渗储层)、II B 类(低 孔特低渗)百分含量分别为 28%、35%、22%,Ⅲ类(低孔特低孔超低渗)百分含量为 10%。整体上,研究 区中深层储层物性较差,具有中低孔中低渗的特征。

3. 储层控制因素分析

3.1. 沉积作用

沉积作用对储层有先天性的控制作用,不仅体现在控制着储层砂体的厚度、规模及空间展布等宏观 特征,还决定着沉积岩石的颗粒大小、填隙物含量的多少、岩石结构(分选、磨圆度、接触方式等)好差等 微观特性,进而控制着岩石原始孔隙度的大小和渗透性的好差,其至对后期成岩强度都有着重要影响[3] [4]。本文以沉积相对储层物性的影响为例。

研究区中深层主要发育辫状河三角洲相,主要储层有河道沉积、废弃河道、越岸沉积、河口坝、席 状砂、水下分流间湾等微相,其中以水下分流河道微相、河口坝微相、席状砂微相、水下分流间湾微相 为主体。不同沉积微相,储层物性有差别(图 6)。

Figure 5. Distribution histogram of the pore structure types of middle-deep strata

Figure 6. Relationship of porosity and permeability of different microfacies of middle-deep strata

图 6. 中深层各微相孔隙度 - 渗透率关系图

表 2. 中深层储层五类孔隙结构储层特征对比表											
类型 参数	Ι		Ι	III							
	ΙA	I B	II A	II B	III						
毛管压力 曲线	$\overset{100}{10}, \overset{100}{10}, 10$	100.00 10.000 1.000 2.000 0.0000 0.0000	$\begin{array}{c} 10, 00 \\ \hline 1, 00 \\ g $	100,000 10,00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
排驱压力 /Mpa	<u>0.008~0.23</u> 0.095	<u>0.17~0.8</u> 0.22	<u>0.11~8</u> 0.31	$\frac{0.34 \sim 4.3}{1.9}$	<u>0.94~40</u> 14.56						
中值压力 /Mpa	<u>0.16~5</u> 0.23	<u>0.44~9.2</u> 2.6	<u>0.5~10.6</u> 3.26	<u>3.22~17.84</u> 5.72	<u>6.54~162</u> 20.1						
喉道直径 均径/μm	<u>8.41~24.17</u> 10.26	<u>0.71~25.84</u> 6.83	<u>0.92~14.58</u> 4.38	<u>1.2~10.53</u> 2.51	<u>0.08~19.1</u> 1.37						
孔隙度/%	<u>12.5~22.34</u> 19.52	<u>12.53~27</u> 14.1	<u>8.7~21.8</u> 10.3	<u>2.2~19.2</u> 3.9	<u>2.3~14.6</u> 5.1						
渗透率/%	<u>52.4~1244</u> 319.2	<u>7.28~257</u> 34.8	$\frac{1.5 \sim 30.5}{10.3}$	$\frac{0.02 \sim 3.5}{0.5}$	$\frac{0.01 \sim 0.2}{0.048}$						

 Table 2. Reservoir characteristic reference table of five types of pore structure of middle-deep strata

 麦 2. 中深层储层五类孔隙结构储层特征对比表

从肃宁-大王庄地区中深层各微相孔渗关系图可以看出,研究区水下分流河道、河口坝沉积微相孔 隙度和渗透率最高,储集物性最好,席状砂次之,水下分流间湾沉积微相孔隙度和渗透率最低,储集物 性最差。

3.2. 成岩作用

有利成岩相主要表现为压实弱、胶结弱或无胶结,长石及易溶岩屑蚀变严重,形成大量次生孔隙, 之后形成的自生矿物少,对孔隙的破坏性不强[5]。本区中深层由于压实作用原生孔隙保留较少,物性较 差,但是在地层埋藏的过程发生的一系列成岩作用的改造后,储层物性得到了改善。溶蚀作用促使长石 及易溶岩屑形成大量的次生孔隙(图 42),是本区中深层储层空间的主要孔隙类型。

3.3. 异常高压作用

异常高压对储层的控制作用主要表现为:① 异常高压使储集物性易于保存。超压可以有效减小地层应力,减缓对超压层系的压实作用,保持了部分原生孔隙。② 超压能够影响抑制有机质热演化、粘土矿物转化,使得地层水长期处于酸性地层水条件下,增强了溶解作用。③ 异常高压可促进更多微裂缝的形成,增加超压体系内的储集空间,改善储层的连通性,增强储层的渗透性能[6]-[8]。通过铸体薄片观察,研究区中深层储层孔隙边缘较平直,能普遍观察到颗粒间点接触现象(图 4①),压实作用中等。因此,压实作用被早期形成并得到有效保存的异常高压所抑制,部分原生孔隙和后期形成的次生孔隙得以保存,改善了中深部储层的储集性能。

4. 结论

1) 饶阳凹陷肃宁 - 大王庄地区中深层砂岩储层主要以发育粉砂岩和细砂岩为主,岩性主要为长石砂 岩和岩屑类砂岩。整体粒度较细,磨圆度较好,分选为中 - 好,胶结类型以孔隙式为主,接触 - 孔隙式 次之。

 a) 肃宁 - 大王庄地区中深层储层储集空间主要为次生孔隙其次为原生孔隙和混合孔隙,还有少量的 微裂缝。孔喉的喉道直径均径较细,孔隙结构分选性不好,属中低孔 - 中低渗型储层;

3) 肃宁 - 大王庄地区中深层储层物性主要受沉积作用和成岩作用、地层压力三方面的影响。高压发 育、溶蚀作用强烈的砂岩储层具有较好的物性,前三角洲亚相中的水下分流河道微相为含油有利区带。

参考文献 (References)

- [1] 马杏垣, 刘和甫, 王维襄, 等. 中国东部中、新生代裂陷作用和伸展构造[J]. 地质学报, 1983, 57(1): 22-32.
- [2] 石兰亭,杨勤林,易定红,等. 冀中饶阳凹陷大王庄地区古近系沉积演化特征与储盖组合分析[J]. 东华理院学报, 2007, 30(2): 132-136.
- [3] 周康, 彭军, 耿梅. 川中 川南过渡带致密砂岩储层物性主控因素分析[J]. 断块油气田, 2008, 15(2): 8-11.
- [4] 陈效华, 高明健, 陈德华. 普光地区须家河组储层控制因素研究[J]. 断块油气田, 2011, 18(2): 169-172.
- [5] 丁晓琪, 张哨楠, 谢世文, 等. 鄂尔多斯盆地西缘麻黄山地区延8储层特征[J]. 地球科学与环境学报, 2010, 32(1): 65-69.
- [6] Osborne, M.J. and Swarbrick, R.E. (1999) Diagenesis in North Sea HPHT Clastic Reservoirs—Consequences for Porosity and Overpressure Prediction. *Marine and Petroleum Geology*, 16, 337-353. <u>http://dx.doi.org/10.1016/S0264-8172(98)00043-9</u>
- [7] 陈中红, 查明, 曲江秀. 沉积盆地超压体系油气成藏条件及机理[J]. 天然气地球科学, 2003, 14(2): 97-98.
- [8] 王占国. 异常高压对储层物性的影响[J]. 油气地质与采收率, 2005, 12(6): 31-33.