华北煤矿区PM_{2.5}中水溶性离子特征及 来源解析

房银祥,常璐凡

河北工程大学地球科学与工程学院,河北 邯郸

收稿日期: 2023年8月8日; 录用日期: 2023年9月1日; 发布日期: 2023年9月8日

摘要

为了解华北典型矿区大气PM_{2.5}中水溶性离子特征及其来源,本研究于2018年4月至2019年2月采集峰峰 矿区大气PM_{2.5}样品,运用离子色谱仪测定PM_{2.5}中Na⁺、NH⁺₄、K⁺、Mg²⁺、Ca²⁺、F⁻、Cl⁻、SO²⁻₄、NO⁻₃ 的质量浓度。结果显示,观测期间PM_{2.5}平均浓度(134.43 ± 77.07) µg·m⁻³,达到《环境空气质量标准》 (GB 3095-2012)中二级标准限值(75 µg·m⁻³)的1.79倍,水溶性离子平均浓度高达(58.76 ± 39.40) µg·m⁻³; SOR和NOR的平均值为0.38和0.22, SO²⁻₄、NO⁻₃和 NH⁺₄在水溶性离子中占比达85.00%,且随 着污染程度加重,二次转化程度也会加大; $\rho(NO^-_3)/\rho(SO^{2-}_4)$ 的均值为1.30,表明移动源对空气污染的 贡献程度较大;主成分分析结果显示,观测期间水溶性离子来源包括二次转化、燃煤和生物质燃烧混合 源55.88%、扬尘源29.82%;后向轨迹模式结果显示,聚类所得到4类气团,其中来自河北省内的两类 气团带占比高达71.76%。

关键词

PM2.5,水溶性离子,SNA,来源分析

Characteristics and Sources Analysis of Water-Soluble Ions in PM_{2.5} in North China Coal Mining Area

Yinxiang Fang, Lufan Chang

School of Earth Science and Engineering, Hebei Engineering University, Handan Hebei

Received: Aug. 8th, 2023; accepted: Sep. 1st, 2023; published: Sep. 8th, 2023

Abstract

To analyze the characteristics and sources of water-soluble ions in $PM_{2.5}$ in north China coal mining area, this study collected atmospheric $PM_{2.5}$ samples in Fengfeng Mining District from April 2018 to February 2019 and used ion chromatography to determine the mass concentration of nine water-soluble ions (Na⁺, NH⁺₄, K⁺, Mg²⁺, Ca²⁺, F⁻, Cl⁻, SO²⁻₄, NO⁻₃) in PM_{2.5}. The result showed that the mean concentration of $PM_{2.5}$ was (134.43 ± 77.07) ug·m⁻³, which was 1.79 times than the second level criterion of Environmental Air Quality Standard, and the mean concentration of water-soluble ions was up to (58.76 ± 39.40) µg·m⁻³; the average of SOR and NOR was 0.38 and 0.22, respectively. The proportion of SO^{2-}_{4-} , NO⁻_3 and NH⁺₄ in water-soluble ions was as high as 85.00%, and the degree of secondary transformation would also increase with worsened pollution. The average of $\rho(NO^-_3)/\rho(SO^{2-}_4)$ was 1.30, which suggested that mobile sources contributed to air pollution significantly. The principal component analysis showed that the sources of water-soluble ions included secondary conversion, coal and biomass combustion mixed sources (55.88%), and dust sources (29.82%). The result of backward trajectory model indicated that the two air masses from Hebei province (71.76%) accounted for the highest proportion in the four types of air masses obtained by clustering.

Keywords

PM_{2.5}, Water-Soluble Ions, SNA, Source Analysis

Copyright © 2023 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

CC O Open Access

1. 引言

京津冀地区频繁出现持续时间长、范围大、污染重的区域大气污染问题,引起了公众和政府的广泛 关注[1]。空气颗粒物(PM, Particulate Matter)对空气质量、人类健康、区域能见度和全球气候变化都有显 著影响[2]。流行病学研究表明长期暴露于较高浓度 PM_{2.5}环境中可导致人体血糖升高[3]或过早死亡[4] [5]。为此,国务院于 2013 年 9 月 10 日起实施《大气污染防治行动计划》("大气十条"),对我国京津 冀、长江三角洲、珠江三角洲等重点区域提出具有针对性的污染控制和减排措施,为我国空气质量得到 持续改善起到了至关重要作用,但空气质量问题依然严峻,冬季重污染事件依旧存在,环境污染的治理 仍是一个长期而漫长的斗争。

水溶性离子(WSIs, Water-Soluble Ions)是 PM_{2.5}的重要组分,包括阴离子(SO₄²⁻、NO₃⁻、CГ、F⁻等)和 阳离子(NH₄⁺、K⁺、Ca²⁺、Na⁺、Mg²⁺等),能够反映颗粒物的表面性质,影响颗粒物酸碱性,其中NO₃、 SO₄²⁻、NH₄⁺是重要的吸光组分,可对能见度产生重要影响。在京津冀的水溶性离子化学特征研究中显示, WSIs 是大气颗粒物中最重要的组成成分,SNA (NO₃⁻、SO₄²⁻、NH₄⁺)是 WSIs 中最重要的组成成分,王 辉等[6]对石家庄 PM_{2.5}中水溶性离子污染特征的研究表明 WSIs 可占 PM_{2.5}质量的 47.04%,其中二次水溶 性离子(SNA, NO₃⁻、NH₄⁺和SO₄²⁻)占 WSIs 的 77.22%;李兴等[7]对 2016 年北京市采暖季 PM_{2.5}水溶性 无机离子污染特征的研究表明 WSIs 可占 PM_{2.5}质量的 39.13%,其中 SNA 占比高达 31.84%;武志宏等[8] 对保定市 PM_{2.5}中水溶性离子污染特征研究发现,水溶性离子中 NO₃⁻、SO₄²⁻、NH₄⁺和 Cl⁻占比最高,特 别在严重污染条件下 ρ(NO₃)明显升高,达到无污染条件的 12.12 倍。不同地区 PM_{2.5}及 WSIs 特征存在 差异,一方面由于各地污染排放源、地理位置和自然环境的差异,另一方面受到气团跨区域输送的影响。 后向轨迹模式(HYSPLIT)可以通过分析气团轨迹定量或定性某区域污染物传输特征,广泛应用到大气污 染传输和扩散的研究中[9][10]。胡偲豪[11]等采用 HYSPLIT 方法对邯郸市微米细气溶胶粒子来源解析的 研究发现,邯郸市 PM_{2.5}主要为西北短距离气流输送,河南北部、河北东北部、山东西部以及京津地区对 于邯郸市 PM_{2.5}浓度贡献较大。

对 PM_{2.5} 中水溶性离子的研究多集中于经济发达的大型城市,针对煤矿区的研究较少,峰峰矿区隶属 于河北省邯郸市,地处太行山东麓的京津冀大气传输通道。近年来,随着煤炭资源开采以及国家施行严 格的"去产能"政策和污染排放控制政策,峰峰矿区面临着艰巨的大气环境治理问题。本研究于 2018~2019 年对邯郸市峰峰矿区大气 PM_{2.5}进行观测,探究 PM_{2.5}中水溶性离子特征和来源,探究不同污染条件下水 溶性组分的差异性,为了解太行山东麓大气输送通道沿线城市 PM_{2.5}中水溶性离子提供基础数据,以期为 峰峰矿区进一步改善空气质量提供数据支持。

2. 材料与方法

2.1. 样品采集

采样地点位于河北省邯郸市峰峰矿区某酒店楼顶,附近无明显工业区和污染源。采样时间为春季 (2018年4月26日~5月1日)、夏季(2018年8月22日~27日)、秋季(2018年10月24日~29日)和冬季(2019 年2月17日~25日)。观测期间同步使用 Kestrel 5500 气象仪记录气象参数,气态污染物数据(SO₂、NO_x 等)来自省控点峰峰矿区地税局。

2.2. 样品分析

采样器为 KB-120F 型中流量采样器,设置流量 100 L/min,滤膜使用 Φ90 mm 石英膜。采样前将石 英膜在马弗炉中 550℃焙烧 5.5 h。使用称重法确定 $PM_{2.5}$ 样品质量,称重前放入恒温恒湿箱(温度 25℃,相对湿度 50% ± 5%),称重使用 d = 0.01 mg 分析天平,称重质量与标况体积的商为 $PM_{2.5}$ 浓度。切取面 积为 2.011 cm² 石英膜置入 50 ml 离心管中,加入 20 ml 超纯水超声浸取 20 min,用 0.22 µm 滤头过滤。 采用离子色谱仪(Dionex ICS-600, USA)分析经过预处理后样品中 9 种水溶性无机离子(SO₄²⁻、NO₃⁻、Cl⁻、F⁻、NH₄⁺、K⁺、Ca²⁺、Na⁺、Mg²⁺)的浓度。

根据《环境空气 PM₁₀和 PM_{2.5}的测定重量法(HJ 618-2011)》中 PM_{2.5}的浓度计算公式对采集的样品的质量浓度进行计算,公式如下,式1:

$$\rho = \frac{M_2 - M_1}{V} \times 10^6 \tag{1}$$

式中: ρ ——大气颗粒物 PM_{2.5} 的质量浓度值(μ g/m³);

*M*₁, *M*₂——采样前空白滤膜和采样后滤膜的质量(g);

V——已换算成标准状态(101.325 kpa, 273 K)下的采样体积(m³)。

(2) 水溶性离子质量浓度计算颗粒物 PM_{2.5} 中水溶性无机离子各组分质量浓度,根据下列公式进行计算,式 2:

$$C = c * 20 * \frac{\pi R_1^2}{2\pi R_2^2} / V$$
 (2)

式中: C——大气中该组分的浓度, 单位为(µg/m³);

c——样品溶液中该组分的浓度,单位为(µg/ml);

20--处理液体积(ml);

R₁、R₂——分别为采样滤纸膜半径和分析滤纸膜半径(mm),本文分别取 40 mm 和 8 mm; V——已换算成标准状态(101.325 kpa, 273 K)下的采样总体积(m³)。

2.3. 主要分析方法

2.3.1. 主成分分析

主成分分析法(Principal Component Analysis, PCA)是一种借助正交变换对数据变量进行降维且不损 失原始数据信息,最终获得主要影响因子的统计学方法,广泛应用于解析气溶胶来源[12]。Cheng 等[13] 使用 PCA 方法解析出黄冈市的 WSIs 来源于二次转化、燃煤和扬尘。本研究采用 SPSS26 进行主成分分 析。

2.3.2. 后向轨迹模式

后向轨迹(HYSPLIT)模式是美国国家海洋中心和大气管理局大气资源实验室(NOAA Air Resources Laboratory)研发的综合系统,应用于分析气流的运动沉降特征和大气污染物的输送扩散轨迹。本研究采用基于 HYSPLIT 轨迹模式和 GIS 技术开发的 TrajStat 软件[14]进行后向轨迹分析,使用 GDAS 数据库 (ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1),数据内容包括气压、气温、相对湿度和风速等[15],模拟高度设置为 500 m,起始时间设置为每日 00:00,每1h模拟1条轨迹,前推 48 h 计算。

3. 结果与讨论

3.1. PM2.5 及水溶性离子浓度特征

观测期间峰峰矿区 PM_{2.5}及 WSIs 情况如图 1 所示, ρ (PM_{2.5})为(134.43 ± 77.07) μg·m⁻³, 达到《环境空 气质量标准》(GB 3095-2012)中的二级标准限值(75 μg·m⁻³)的 1.79 倍,该浓度高于相邻地区安阳市的(85.81 ± 45.430) μg·m⁻³ (2018~2019 年) [16], 更高于 "2 + 26 城市" 唐山市的 58.92 μg·m⁻³ (2017~2018 年) [17] 和太原市的 67.01 μg·m⁻³ (2017~2018) [18], 可见峰峰矿区空气污染水平较为严重。WSIs 作为 PM_{2.5} 的重 要组分, ρ (WSIs)为(58.76 ± 39.40) μg·m⁻³, 占比达到 PM_{2.5} 质量浓度的 43.71%, 由此可见 WSIs 对峰峰矿 区的污染有很大贡献。9 种 WSIs 浓度由高到低分别为 NO₃ (21.62 ± 16.64) μg·m⁻³, SO₄²⁻ (16.61 ± 11.96) μg·m⁻³, NH₄⁺ (11.68 ± 10.22) μg·m⁻³, Cl⁻ (3.01 ± 2.44) μg·m⁻³, Na⁺ (0.94 ± 0.71) μg·m⁻³, K⁺ (1.50 ± 1.20) μg·m⁻³, Ca²⁺ (2.70 ± 3.72) μg·m⁻³, F⁻ (0.52 ± 1.15) μg·m⁻³, Mg²⁺ (0.19 ± 0.17) μg·m⁻³.

二次水溶性离子(SNA, NO₃⁻、NH₄⁺和SO₄²⁻)作为PM_{2.5}的重要组分,平均浓度(49.91 ± 36.80) μ g·m⁻³, 占 PM_{2.5}质量浓度的 37.12%,是影响 ρ (PM_{2.5})的重要因素,可以反映空气二次污染程度[19]。SNA 平均浓 度(49.91 ± 36.80) μ g·m⁻³,且浓度远高于其他离子,占总 WSIs 的 85.00%,与邯郸市[20]和北京市[21]的研 究结果相近。各季节 ρ (SNA)在 ρ (WSIs)占比差异明显,分别为93.76%(春)、92.19%(夏)、55.94%(秋)、 87.48%(冬)。不同季节间 ρ (SNA)差异明显,冬季浓度最高(85.84 μ g·m⁻³)可达到秋季(18.96 μ g·m⁻³)的 4.53 倍,由此可见冬季二次污染更严重。

3.2. 不同污染条件下水溶性离子特征差异

结合 HJ633-2012《环境空气质量指数(AQI)技术规定(试行)》和观测期间实际空气质量情况,将空气污染水平分为五类,即优良(AQI ≤ 100)、轻度污染(101 < AQI ≤ 150)、中度污染(150 < AQI ≤ 200)、重度污染(200 < AQI ≤ 300)和严重污染(AQI > 300)。据此,清洁天、轻度污染、中度污染、重度污染和严重污染下 PM_{2.5}的质量浓度分别为(57.75 ± 15.20) μ g·m⁻³、(107.90 ± 23.04) μ g·m⁻³、(173.01 ± 72.03) μ g·m⁻³、(216.85 ± 22.91) μ g·m⁻³和(303.85 ± 43.19) μ g·m⁻³, WSIs 浓度分别为(19.04 ± 7.01) μ g·m⁻³、(43.34 ± 11.47) μ g·m⁻³、(81.82 ± 21.38) μ g·m⁻³、(102.16 ± 13.05) μ g·m⁻³、和(150.92 ± 8.07) μ g·m⁻³。随着空气污染程度的加重,WSIs 的占 PM_{2.5}的比例由 32.96%上升到 49.67%。可见 WSIs 对 PM_{2.5}的影响随着空气污染程度加重而更加明显。

随着污染程度加重, NH⁺₄、NO⁻₃和SO²₄的平均浓度由 0.48 µg·m⁻³、4.64 µg·m⁻³、4.28 µg·m⁻³上升到 34.84 µg·m⁻³、50.89 µg·m⁻³和 49.37 µg·m⁻³, 三种离子在 PM_{2.5}中的占比由 16.45%上升至 44.46%, 而其他 离子占比变化则不明显,由此可见峰峰矿区空气污染加重明显受到二次水溶性离子 NH⁺₄、NO⁻₃和 SO²⁻₄的 影响(表 1)。

	Na^+	NH_4^+	K^+	Mg^{2+}	Ga ²⁺	F^{-}	Cl	SO_4^{2-}	NO_3^-
清洁天	0.65	0.48	0.66	0.20	5.97	0.23	1.92	4.28	4.64
轻度污染天	0.71	7.91	0.93	0.15	2.44	0.77	1.63	13.40	15.41
中度污染天	0.68	18.47	2.25	0.16	0.58	0.19	3.23	25.82	30.43
重度污染天	1.84	23.18	2.54	0.22	1.64	0.34	6.98	19.00	46.42
严重污染天	2.07	34.84	4.36	0.37	0.84	0.47	7.70	49.37	50.89

Table 1. Mass concentration of water-soluble ions during observation period (µg·m⁻³) 表 1. 观测期水溶性离子质量浓度(µg·m⁻³)

3.3. PM_{2.5} 二次转化和酸碱性

3.3.1. PM_{2.5} 二次转化

SO₄²⁻和NO₃⁻作为PM_{2.5}的重要组分,由SO₂和NO₂等气态前体物经过复杂理化反应产生,浓度较高时表明大气中存在着较高浓度的二次气溶胶[22]。硫氧化率(SOR, Sulfur oxidation rate)和氮氧化率(NOR, Nitrogen oxidation rate)可以用来表征SO₂向SO₄²⁻,NO₂向NO₃⁻的二次转化程度,一般来说SOR和NOR大于0.1,表示气态污染物发生明显的二次转化[10],SOR和NOR越大,大气中光化学氧化越强, $\rho(SO_4^{2-})$ 和 $\rho(NO_3^{-})$ 越高。

$$SOR = SO_4^{2-} / (SO_4^{2-} + SO_2)$$
 (3)

$$NOR = NO_{3}^{-} / (NO_{3}^{-} + NO_{2})$$
(4)

本研究中, SOR 和 NOR 的年平均值为 0.38 和 0.22,表明峰峰矿区 PM_{2.5}中二次转化现象较为明显。 优良、轻度污染、中度污染、重度污染和严重污染条件下 SOR 均值分别为 0.22、0.38、0.56、0.32 和 0.67, NOR 均值分别为 0.08、0.20、0.34、0.32 和 0.34。可见随着污染加重, SO₂和 NO₂等气体前体物二次转 化程度明显加强,显著区别于无污染条件,表明污染加重明显受到 SO₂和 NO₂等气体前体物的二次转化 的影响。

SOR 和 NOR 主要受到温度和湿度的影响[23] [24]。从表 2 可以看出 SOR 与温度和湿度呈显著正相关,相关系数分别为 0.76 和 0.66,表明 SOR 对温度更为敏感; NOR 仅与相对湿度有一定相关关系,表明 NOR 对湿度的响应较为敏感。就此可以得到,当峰峰矿区处于温度和湿度较高的时期,更有利于空气中 SO₂和 NO₂等气态前体发生二次转化。

	SOR	NOR	温度	湿度
SOR	1	0.66	0.76	0.66
NOR	0.66	1	0.25	0.47
温度	0.76	0.25	1	0.55
湿度	0.66	0.47	0.55	1

 Table 2. The correlation between SOR and NOR with temperature and humidity

 表 2. SOR 和 NOR 与温度和湿度的相关性

3.3.2. PM_{2.5}酸碱性

大气中的 CF、SO₄²⁻、NO₃⁻、F⁻等阴离子可以增加空气颗粒物的酸性,NH₄⁺、Ca²⁺、K⁺、Na⁺等阳离 子可以增加空气颗粒物的碱性[13],故可以通过阴阳离子的摩尔比,即 AE (anion equivalent)和 CE (cation equivalent)比值判断 PM_{2.5}酸碱性。阳离子和阴离子的摩尔电荷浓度计算公式分别为:

$$CE = \frac{\left[Na^{+}\right]}{23} + \frac{\left[K^{+}\right]}{39} + \frac{\left[Ca^{2+}\right]}{20} + \frac{\left[Mg^{2+}\right]}{12} + \frac{\left[NH_{4}^{+}\right]}{18}$$
(5)

$$AE = \frac{\left[SO_{4}^{2^{-}}\right]}{48} + \frac{\left[NO_{3}^{-}\right]}{62} + \frac{\left[CI^{-}\right]}{35.5} + \frac{\left[F^{-}\right]}{19}$$
(6)

通过计算可知,观测期间 AE/CE 的均值为 0.90 (R² = 0.96),酸性物质(Cl⁻、SO₄²⁻、NO₃⁻、F)可以被碱 性物质(NH₄⁺、Ca²⁺、K⁺、Na⁺)完全中和,结果显示峰峰矿区 PM_{2.5} 为弱碱性,这一结果不同于盘锦市[25] 的研究结论,而与郑州市[26]的研究结果相符。且大气 PM_{2.5} 的酸碱性存在季节性变化,在春夏时呈弱酸性, 秋冬时呈碱性,见图 2。结合 PM_{2.5} 的二次转化可知,峰峰矿区 PM_{2.5} 中 SO₂、NO₂等气态前体物二次转化 较为明显, $\rho(SO_4^{-})$ 和 $\rho(NO_3^{-})$ 明显高于 $\rho(NH_4^{+})$,使大气中硝酸盐和硫酸盐的浓度高于铵盐浓度。春季、 夏季、秋季和冬季 AE/CE 均值分别为 1.01、1.14、0.72 和 0.90,由于夏季温度和湿度较高,可促进气体前 体发生二次转化产生更多的 SO₄²⁻和 NO₃⁻,增强了 PM_{2.5} 的酸性,使夏季 PM_{2.5} 酸性明显强于其他季节。

3.4. 水溶性离子来源解析

3.4.1. $\rho(NO_3^-)/\rho(SO_4^{2-})$

 $\rho(NO_3^-)$ 与 $\rho(SO_4^{2-})$ 比值可以用来衡量移动源和固定源对空气污染的贡献程度[27], NO_3^-主要来源于 汽车等移动源排放, SO_4^-则主要来源于燃煤等固定源排放, $\rho(NO_3^-)$ 与 $\rho(SO_4^{2-})$ 比值大于1表明移动源对 空气污染贡献程度大于固定源,比值小于1表明固定源对空气污染贡献程度大于移动源[23]。本研究中

Figure 2. The balance relationship of anions and cations in PM_{2.5} 图 2. PM_{2.5}中阴阳离子平衡关系

ρ(NO₃⁻)/ρ(SO₄²⁻)的均值为 1.30, 凸显出移动源对空气质量的重要影响,这意味着未来峰峰矿区大气污染 控制的重点在于移动源排放的管控。这一结果与近年我国北方地区的研究结果相符,如沈阳市[28]和焦作 市[29]。自"大气十条"的实施和京津地区"煤改电"的推进,固定源 SO₄²⁻的排放量迅速下降,Wang [30] 等对乌海市的研究同样发现自 2010 年后 SO₄²⁻的前体物 SO₂排放量下降速度明显高于 NO₂,移动源对空 气污染的贡献程度逐渐增强。

3.4.2. 主成分分析法

利用 SPSS 26 中的 PCA 模块,对峰峰矿区 PM_{2.5}中 WSIs 进行主成分分析,根据所得成分及因子载 荷确定 PM_{2.5}来源。从表 3 可以看出,PM_{2.5}中 WSIs 通过主成分分析提取 2 个因子,2 个因子对 PM_{2.5}中 WSIs 的累计贡献率为 85.70%。因子 1 可以解释方差比例的 55.88%,载荷较大的组分有 K⁺ (0.939)、Cl⁻ (0.936)、NH⁺₄ (0.923)、SO²⁻₄ (0.819)、NO⁻₃ (0.910)和 Na⁺ (0.805),通常将 K⁺视为生物质燃烧的标志性 元素,Cl⁻的来源较为复杂,来源于燃煤、生物质燃烧以及海洋气溶胶输送,由于观测地距海洋较远难以 受到海洋气溶胶影响,故Cl⁻可能主要来源于燃煤和生物质燃烧,NH⁺₄、SO²⁻和 NO⁻₃多来自于气体前体 物(SO₂和 NO₂)的氧化,故因子 1 可识别为燃煤和生物质燃烧、二次转化混合源。因子 2 可以解释方差比 例的 29.82%,载荷较大的组分为 Ca²⁺ (0.930)、Mg²⁺ (0.843)和 F⁻ (0.890), Ca²⁺和 Mg²⁺为典型的地壳元素, F⁻ 虽在因子 22 中载荷较高,但由于其整体浓度较低,故因子 2 可识别为扬尘源。

夜3. 土成刀旋转凶丁钺间起阵					
离子名称	因子一	因子二			
K^+	0.939	-0.052			
Cl	0.936	0.100			
NH_4^+	0.923	-0.335			

Table 3. The matrix of principal component rotation factor 表 3. 主成分旋转因子载荷矩阵

Continued		
NO ₃	0.910	-0.126
SO_4^{2-}	0.819	-0.312
Na ⁺	0.805	0.282
Ca ²⁺	-0.143	0.930
F^-	0.159	0.890
Mg^{2+}	0.474	0.843
解释方差/%	55.877	29.824
累计方差/%	55.877	85.701
来源	二次转化、燃煤和生物质燃烧混合源	扬尘源

3.4.3. 后向轨迹

利用 MeteoInfo 软件对峰峰矿区 2019 年 2 月的气流数据进行后向轨迹进行聚类分析,结果如图 3 所示。可以看出,所有气团聚类为 4 类,即 A、B、C、D。其中聚类 B 和 D 主要受到来自河北中部和邯郸市本地的气流影响,轨迹占比分别为 40.28%和 31.48%;聚类 C 主要来源于山东西南部地区,经河南北部到达峰峰矿区,轨迹占比达到 18.52%;聚类 A 则主要源自蒙古中西部,途径陕西、山西抵达峰峰矿区, 是输送距离较远的气流,气流轨迹占比为 9.72%。

总体来看:峰峰矿区冬季以北方和东北方向气流为主,污染过程受短距离气流传输影响较大,且受到来自河北中部和邯郸市周边地区气流传输影响达到 71.76%,这可能与重污染期间峰峰矿区低温高湿的 气候条件形成了一个相对稳定的大气环境有关,进而突出了短距离传输对大气污染的影响,这与胡偲豪 等[11]的研究结果一致。

4. 结论

监测期间,峰峰矿区 PM_{2.5}平均浓度为(134.43 ± 77.07) μg·m⁻³,水溶性离子平均浓度为(58.76 ± 39.40) μg·m⁻³。SNA 占 WSIs 的 85.00%,且有较为明显的季节变化,以冬季春季浓度较高,夏季秋季浓度较低。

2) 在污染条件下,水溶性离子在 PM_{2.5} 占比由 32.96%上升到 49.67%,其中 SNA 占比由 16.37%上升 到 44.46%,可见 WSIs 对 PM_{2.5} 增长有明显影响。

3) 随着污染加重 SOR 和 NOR 的值增大,可见污染条件下的二次转化更为明显,SOR 对温度较为敏感,NOR 则对湿度较为敏感。

4) ρ(NO₃⁻)与ρ(SO₄²⁻)比值表明,移动源对空气污染贡献更为明显;主成分分析结果表明,PM_{2.5}中水 溶性离子来源包括二次转化、燃煤和生物质燃烧混合源(55.88%)以及扬尘源(29.82%);后向轨迹模式结果 表明,来自河北省中部和邯郸市本地的气团占比较高。

参考文献

- [1] Yang, J., Tang, Y., Han, S., *et al.* (2021) Evaluation and Improvement Study of the Planetary Boundary-Layer Schemes during a High PM_{2.5} Episode in a Core City of BTH Region, China. *Science of the Total Environment*, **765**, Article ID: 142756. <u>https://doi.org/10.1016/j.scitotenv.2020.142756</u>
- [2] Satsangi, A., Mangal, A., Agarwal, A., Lakhani, A. and Kumari, K.M. (2020) Variation of Carbonaceous Aerosols and Water Soluble Inorganic Ions during Winter Haze in Two Consecutive Years. *Atmospheric Pollution Research*, 12, 242-251. <u>https://doi.org/10.1016/j.apr.2020.12.011</u>
- [3] Li, D., Wang, J.B., Yu, Z.B., Lin, H.B. and Chen, K. (2020) Air Pollutants Concentration and Variation of Blood Glucose Level among Pregnant Women in China: A Cross-Sectional Study. *Atmospheric Environment*, 223, Article ID: 117191. <u>https://doi.org/10.1016/j.atmosenv.2019.117191</u>
- [4] Bu, X., Xie, Z., Liu, J., et al. (2021) Global PM_{2.5}-Attributable Health Burden from 1990 to 2017: Estimates from the Global Burden of Disease Study 2017. Environmental Research, 197, Article ID: 111123. <u>https://doi.org/10.1016/j.envres.2021.111123</u>
- [5] Wang, C., Wang, Y., Shi, Z., *et al.* (2021) Effects of Using Different Exposure Data to Estimate Changes in Premature Mortality Attributable to PM_{2.5} and O₃ in China. *Environmental Pollution*, **285**, Article ID: 117242. <u>https://doi.org/10.1016/j.envpol.2021.117242</u>
- [6] 王辉, 吕帆, 张信博, 等. 石家庄市 PM_{2.5} 中水溶性离子污染特征[C]//中国环境科学学会. 第二十四届大气污染 防治技术研讨会论文集. 广州: 中国环境科学学会, 2020: 104-108.
- [7] 李星, 赵文吉, 熊秋林, 等. 北京采暖季 PM_{2.5} 水溶性无机离子污染特征及其影响因素[J]. 生态环境学报, 2018, 27(1): 93-100.
- [8] 武志宏, 孙爽, 武高峰, 等. 保定市 PM_{2.5} 中水溶性离子污染特征及来源分析[J]. 环境化学, 2021, 40(5): 1421-1430.
- [9] Xie, Y., Lu, H., Yi, A., et al. (2020) Characterization and Source Analysis of Water-Soluble Ions in PM_{2.5} at a Background Site in Central China. Atmospheric Research, 239, Article ID: 104881. <u>https://doi.org/10.1016/j.atmosres.2020.104881</u>
- [10] Cui, Y., Yin, Y., Chen, K., et al. (2020) Characteristics and Sources of WSI in North China Plain: A Simultaneous Measurement at the Summit and Foot of Mount Tai. Journal of Environmental Sciences, 92, 264-277. https://doi.org/10.1016/j.jes.2020.02.017
- [11] 胡偲豪, 吴春苗, 高娜娜, 等. 邯郸市微米细气溶胶粒子来源解析及其对重污染的贡献[J]. 环境化学, 2023, 42(6):1876-1885.
- [12] Zhou, J.B., Xing, Z.Y., Deng, J.J. and Du, K. (2016) Characterizing and Sourcing Ambient PM_{2.5} over Key Emission Regions in China I: Water-Soluble Ions and Carbonaceous Fractions. *Atmospheric Environment*, **135**, 20-30. <u>https://doi.org/10.1016/j.atmosenv.2016.03.054</u>
- [13] Cheng, C., Shi, M., Liu, W., et al. (2021) Characteristics and Source Apportionment of Water-Soluble Inorganic Ions in PM_{2.5} during a Wintertime Haze Event in Huanggang, Central China. Atmospheric Pollution Research, 12, 111-123. <u>https://doi.org/10.1016/j.apr.2020.08.026</u>

- [14] Wang, Y.Q., Zhang, X.Y. and Draxler, R.R. (2009) TrajStat: GIS-Based Software That Uses Various Trajectory Statistical Analysis Methods to Identify Potential Sources from Long-Term Air Pollution Measurement Data. *Environmental Modelling & Software*, 24, 938-939. <u>https://doi.org/10.1016/j.envsoft.2009.01.004</u>
- [15] Zhou, X., Li, Z., Zhang, T., et al. (2021) Chemical Nature and Predominant Sources of PM₁₀ and PM_{2.5} from Multiple Sites on the Silk Road, Northwest China. Atmospheric Pollution Research, **12**, 425-436. https://doi.org/10.1016/j.apr.2020.10.001
- [16] 孙有昌,姜楠,王申博,等. 安阳市大气 PM2.5 中水溶性离子季节特征及来源解析[J]. 环境科学, 2020, 41(1): 75-81.
- [17] 彭猛,崔璐璐,王磊,等. 唐山市大气 PM2.5 季节污染特征及来源分析[J]. 生态环境学报, 2020, 29(9): 1855-1861.
- [18] 任浦慧, 解静芳, 姜洪进, 等. 太原市大气 PM2.5 季节传输路径和潜在源分析[J]. 中国环境科学, 2019, 39(8): 3144-3151.
- [19] Su, J., Zhao, P., Ding, J., et al. (2021) Insights into Measurements of Water-Soluble Ions in PM_{2.5} and Their Gaseous Precursors in Beijing. Journal of Environmental Sciences, **102**, 123-137. <u>https://doi.org/10.1016/j.jes.2020.08.031</u>
- [20] 任秀龙, 牛红亚, 李淑娇, 等. 邯郸市大气细颗粒物中水溶性离子的污染特征及来源解析[J]. 环境化学, 2021, 40(11): 3510-3519.
- [21] 石梦双,韩斌,杨文,等.北京市典型重污染过程中 PM_{2.5}载带水溶性无机离子污染特征分析[J].中国环境监测, 2018,34(3):21-29.
- [22] 张敬巧, 罗达通, 王少博, 等. 聊城市秋季 PM_{2.5} 中水溶性离子污染特征及来源解析[J]. 环境工程技术学报, 2021, 11(4): 617-623.
- [23] Pan, Y., Luo, L., Xiao, H., et al. (2020) A One-Year Comprehensive Characteristics of Water Soluble Inorganic Ions in PM_{2.5} from a Typical Mountainous City. Atmospheric Pollution Research, **11**, 1883-1890. https://doi.org/10.1016/j.apr.2020.08.006
- [24] Pang, N., Gao, J., Che, F., et al. (2020) Cause of PM_{2.5} Pollution during the 2016-2017 Heating Season in Beijing, Tianjin, and Langfang, China. Journal of Environmental Sciences, 95, 201-209. https://doi.org/10.1016/j.jes.2020.03.024
- [25] 马妍, 姬亚芹, 国纪良, 等. 盘锦市秋季 PM_{2.5} 水溶性离子特征及来源分析[J]. 环境科学学报, 2020, 40(2): 401-407.
- [26] 赵庆炎,姜楠,燕启社,等.郑州市夏、秋季大气颗粒物中水溶性无机离子质量浓度及粒径分布特征[J].环境科学,2018,39(11):4866-4875.
- [27] Lu, H., Zhu, Z.L. and Wang, S.S. (2020) A Full-Scale Analysis of Chemical Characteristics of PM_{2.5} and PM₁₀ during Haze and Non-Haze Episodes in Cixi city, China. *Atmospheric Pollution Research*, **11**, 1000-1008. <u>https://doi.org/10.1016/j.apr.2020.02.014</u>
- [28] 王国祯, 任万辉, 于兴娜, 等. 沈阳市冬季大气 PM_{2.5} 中水溶性离子污染特征及来源解析[J]. 环境科学, 2021, 42(1): 30-37.
- [29] 潘湘龙, 潘媛媛, 肖化云, 等. 焦作市冬季 PM_{2.5} 中水溶性离子组成特征及来源解析[J]. 环境污染与防治, 2020, 42(6): 755-759.
- [30] Wang, H., Wang, X., Zhou, H., et al. (2021) Stoichiometric Characteristics and Economic Implications of Water-Soluble ions in PM_{2.5} from a Resource-Dependent City. Environmental Research, 193, Article ID: 110522. https://doi.org/10.1016/j.envres.2020.110522