Hydrothermal Synthesis and Luminescent Properties of Spindle-Like NaGd(MoO₄)₂: Tb³⁺, Eu³⁺ Phosphors

Yao Ding

School of Physics and Electronics Engineering, Harbin Normal University, Harbin Heilongjiang Email: 390318697@qq.com

Received: Dec. 11th, 2015; accepted: Dec. 27th, 2015; published: Dec. 30th, 2015

Copyright © 2015 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract

Tb³⁺, Eu³⁺ codoped NaGd(MoO₄)₂ phosphors were prepared by the method of hydrothermal process. The structure of the phosphors was characterized by the X-ray diffraction (XRD), which was corresponded to JCPDS card with # 25-0828. The photoluminescence properties of the prepared products were characterized by the excitation and emission spectra. The energy transfer from Tb³⁺ to Eu³⁺ in NaGd(MoO₄)₂ phosphors was confirmed.

Keywords

Hydrothermal Synthesis, NaGd(MoO₄)₂, Tb³⁺, Eu³⁺

NaGd(MoO₄)₂: Tb³⁺, Eu³⁺荧光粉的水热合成及 发光性质研究

丁瑶

哈尔滨师范大学,物理与电子工程学院,黑龙江 哈尔滨 Email: 390318697@qq.com

收稿日期: 2015年12月11日; 录用日期: 2015年12月27日; 发布日期: 2015年12月30日

摘要

采用水热法合成了NaGd(MoO₄)₂: Tb³⁺, Eu³⁺荧光粉。利用X射线衍射(XRD)对样品进行了测试,所制样品的衍射峰与标准卡片PDF#25-08282一致。样品的发光性质通过激发光谱和发射光谱进行了表征。证实了从Tb³⁺到Eu³⁺有能量传递的存在。

关键词

水热法,NaGd(MoO₄)₂,Tb³⁺,Eu³⁺

1. 引言

近年来,更多的稀土(RE)离子掺杂的发光材料被应用于开发新的光学设备,如固态激光器、光纤、 放大器、显示、照明和生物传感器等[1] [2]。白光 LED 由于体积小、能耗少、寿命长、无污染的优点, 已成为一种新型的固态照明,被业内人士誉为第四代照明光源而备受瞩目[3]-[6]。传统的白光 LED 是基 于蓝色芯片结合 YAG: Ce 荧光粉的黄光发射,但是由于市面上的红色荧光粉缺少红光成分,导致白光 LED 显色指数偏低,为了改变这种现象必须增加红色光源。因此,寻找一种稳定性高、能够有效吸收近紫外 光或蓝光的红色荧光粉受到了人们越来越多的关注。钼酸盐材料具有良好的光学性质和化学稳定性,并 且钼酸盐和钨酸盐材料中 Eu³⁺的较强的 4f-4f 跃迁吸收主要位于近紫外区和蓝光区,并可将吸收的蓝光和 近紫外光的能量有效转化为红光发射[7]-[10]。Tb³⁺掺杂的钼酸盐可以有效地发射绿光,所以 Eu³⁺, Tb³⁺共 掺的钼酸盐有希望成为一种黄色荧光粉。众所周知,许多有机添加剂可以修饰晶体表面,大量文献报道 了在化学合成中柠檬酸钠试剂可以有效地控制样品的形貌[11]-[13]。

基于以上的原因本文采用水热法在柠檬酸钠水溶液中合成了 Eu³⁺, Tb³⁺ 共掺的 NaGd(MoO₄)2 荧光 粉,并用 X 射线衍射仪对样品的结构进行了表征,测量了样品的发射光谱和激发光谱,确定了样品的 能量传递类型。

2. 实验

钼酸盐粉体材料的合成方法包括固相法、溶胶凝胶法、微乳液以及水热-溶剂热合成法等,其中水热法可对样品粒径和形貌实现较好的控制,易于获得具有良好结晶性的纳米粒子。水热法合成纺锤状NaGd(MoO₄)₂: Tb³⁺, Eu³⁺粒子的具体实验步骤如下:首先,在磁力搅拌下将5 mmol的Na₃Cit 溶于50 mL去离子水中;其次将5 mmol Re(NO₃)₃·6H₂O (Re = Gd + Eu+ Td)溶于10 ml去离子水中,加入至上述的Na₃Cit 溶液中形成悬浊液并标记为溶液 I;再次,将10 mL 1 mol/L 的 Na₂MoO₄·2H₂O 水溶液缓慢加入至溶液 I 中,此时白色沉淀立即溶解并形成了透明的胶体溶液。继续搅拌15 min 后,将所得到的胶体溶液转入一个100 mL 的聚四氟乙烯内衬不锈钢反应釜中并将其置于烘箱中于 180℃下反应 24 h。待反应釜自发冷却至室温后,所得产物经离心、洗涤数遍后置于烘箱中于 80℃下干燥 10 h即可得到白色的NaGd(MoO₄)₂: Tb³⁺, Eu³⁺粉末。在本实验中共制备了八个样品,掺杂浓度分别为 NaGd(MoO₄)₂: 5%Tb³⁺, x%Eu³⁺ (x = 0, 0.3, 0.5, 1, 3, 5, 7, 10)。

XRD (X 射线衍射)图谱由日本理学公司 D/max-2600/pc 型 X 射线衍射仪测得,扫描速度为 4.0 °/min,步长 0.02°,扫描范围 2 θ = 10°~70°。激发光谱和发射光谱由英国爱丁堡公司 LFS920 荧光光 谱仪测得。

3. 结果与讨论

3.1. 样品晶体结构的表征

图 1 为 Tb³⁺浓度为 5%, Eu³⁺ 掺杂浓度分别为 0%, 1%, 5%, 10%时 NaGd(MoO₄)₂: Tb³⁺, Eu³⁺样品 的 XRD 图谱。从图中可以看出,样品的衍射峰与标准卡片 JCPDS#25-0828 一致,没有观察到杂质衍射 峰,说明合成的是纯相样品,为体心四方相的白钨矿结构。从图 1 中还可以看出,Eu³⁺和 Tb³⁺的掺杂基 本没有改变 NaGd(MoO₄)₂样品的衍射峰峰位,这是因为 Eu³⁺和 Tb³⁺的离子半径与同为稀土元素的 Gd³⁺ 十分接近,引入 Eu³⁺和 Tb³⁺取代 Gd³⁺位置时对 NaGd(MoO₄)₂基质晶体结构的破坏很小。

3.2. 样品光致发光性质

图 2 为 NaGd(MoO₄)₂ 样品的激发光谱。图 2(a) Tb³⁺浓度为 5% 时 NaGd(MoO₄)₂ 样品,监测 545.5 nm(对应 Tb³⁺⁵D₄ → ⁷F₅ 跃迁发射)发光时的激发光谱,其中位于 200~340 nm 的宽带吸收是由于 O²Mo⁶⁺ 的电荷迁移带和 Tb³⁺的 4f-5d 跃迁吸收。在 486 nm 处有一个较强的吸收峰对应于 Tb³⁺ 的 ⁵D₄ → ⁷F₆ 的特 征跃迁吸收。图 2(b)是 NaGd(MoO₄)₂: 5%Tb³⁺, 1%Eu³⁺ 样品在监测 545.5 nm 时的激发光谱,与(a)图相似。图 2(c)为 Eu³⁺和 Tb³⁺掺杂浓度分别为 1% 和 5% 的样品,监测 613 nm(对应于 Eu³⁺5D₀ → ⁷F₂ 跃迁发射)发光 时的激发光谱,位于 200~340 nm 的宽带吸收归因于 O²Eu³⁺和 O²Mo⁶⁺ 的跃迁。从图中可以看到位于 362 nm, 381 nm, 394.5 nm, 416 nm, 465 nm 发射峰处分别对应着 Eu³⁺ 的 ⁷F₀ → ⁵D₄, ⁷F₀ → ⁵D₂; 在 486 nm 出还有一个比较明显的激发峰,与图 2(a)比较可以发现其对应的是 Tb³⁺ ⁷F₆ → ⁵D₄ 跃迁吸收。对比图 2(b)和(c)可以看出,对于 Eu³⁺, Tb³⁺共掺样品,当监测 Tb³⁺ 的发光时无法观察到 Eu³⁺跃迁吸收对应的激发峰。然而,当监测 Eu³⁺的发光时可以在 486 nm 处观察到 Tb³⁺ 的特征吸收对应的激发峰。由此可以得出结论:从 Tb³⁺ 到 Eu³⁺能量传递是有效的,而从 Eu³⁺到 Tb³⁺无明显的能量传递行为。

图 3 为样品在不同激发波长下的发射光谱,其中图 3(a)是 NaGd(MoO₄)₂: 5% Tb³⁺样品在 486 nm 波长下 的发射光谱;图 3(b)是 NaGd(MoO₄)₂: 5% Tb³⁺, 1% Eu³⁺样品在 486 nm 波长下的发射光谱;图 3(c)为 NaGd(MoO₄)₂: 5% Tb³⁺, 1% Eu³⁺样品在 394.5 nm 波长下的发射光谱。图 3(a)中的发射峰位于 545 nm, 587 nm, 621 nm 分别对应于 Tb³⁺ $^{5}D_{4} \rightarrow ^{7}F_{5}$, $^{5}D_{4} \rightarrow ^{7}F_{3}$ 的跃迁发射。从图 3(c)中可以观察到 Eu³⁺主要 的发射峰位于 592 nm, 613 nm, 655 nm, 702 nm 分别对应于 Eu³⁺ $^{5}D_{0} \rightarrow ^{7}F_{1}$, $^{5}D_{0} \rightarrow ^{7}F_{2}$, $^{5}D_{0} \rightarrow ^{7}F_{3}$, $^{5}D_{0} \rightarrow ^{7}F_{4}$ 跃迁发射。从图 3(b)中既可以观察到 Eu³⁺的 $^{5}D_{0} \rightarrow ^{7}F_{1}$, $^{5}D_{0} \rightarrow ^{7}F_{3}$, $^{5}D_{0} \rightarrow ^{7}F_{4}$ 跃迁发射

Figure 1. XRD patterns of the prepared products for NaGd(MoO₄)₂: Tb³⁺, Eu³⁺ 图 1. NaGd(MoO₄)₂: Tb³⁺, Eu³⁺样品的 XRD 图谱

丁瑶

Figure 2. The excitation spectra of NaGd(MoO₄)₂: 5% Tb³⁺ (a) and NaGd (MoO₄)₂: 5% Tb³⁺, 1% Eu³⁺ ((b), (c))

Figure 3. The emission spectra of the samples with the excitation wavelength of 486 nm ((a), (b)); 394.5 nm (c); and doped density of (a) 5% Tb³⁺ and ((b), (c)) 5% Tb³⁺, 1% Eu³⁺ **图 3.** 激发波长分别为((a), (b)) 486 nm; (c) 394.5 nm 掺杂浓度分别为(a) 5% Tb³⁺ and((b), (c)) 5% Tb³⁺, 1% Eu³⁺样品的发射光谱

的同时,又能够观察到 Tb^{3+} 特征发射。对比图 3(b)和图 3(c)可以发现,当用 Eu^{3+} 的特征激发波长(394.5 nm) 激发 $NaGd(MoO_4)_2$: 5% Tb^{3+} , 1% Eu^{3+} 样品时仅观察到 Eu^{3+} 发射,但当用 Tb^{3+} 的特征激发波长(486 nm)激发相同样品的时候可以同时看到 Tb^{3+} 和 Eu^{3+} 的发射。这进一步证明了从 Tb^{3+} 到 Eu^{3+} 存在有效的能量传递而从 Eu^{3+} 到 Tb^{3+} 无明显的能量传递行为,这与上面对激发光谱的分析讨论所得的结果相一致。图 4 给出了从 Tb^{3+} 的 $^{5}D_4$ 能级向 Eu^{3+} 的能量传递过程。从 Tb^{3+} 到 Eu^{3+} 的能量传递之所以非常有效,是由于它们的能级分布有很大的重叠部分[14]。

图 5 是激发波长为 486 nm 时样品 NaGd(MoO₄)₂: 5% Tb³⁺, x% Eu³⁺(x = 0, 0.3, 0.5, 1, 3, 5, 7, 10) 的发射光谱。可以看出随着 Eu³⁺掺杂浓度的提高, Tb³⁺发射峰强度逐渐降低而 Eu³⁺发射峰强度逐渐增大。

图 4. NaGd(MoO₄)₂: Tb³⁺, Eu³⁺ 样品 Tb³⁺ → Eu³⁺能量传递的能级图

nm excitation. 图 5. NaGd(MoO₄)₂: 5%Tb³⁺, x%Eu³⁺ (x = 0~10)在 486 nm 下的发射光谱

这说明,随着 Eu^{3+} 浓度的增加,从 Tb^{3+} 到 Eu^{3+} 的能量传递效率不断增加,致使 Tb^{3+} 发光减弱的同时 Eu^{3+} 发光增强。

从以上观察中我们可以得出结论, NaGd(MoO₄)₂: Tb³⁺, Eu³⁺荧光粉的发光颜色可以通过调节 Eu³⁺的掺 杂浓度来改变。为了进一步研究 Eu³⁺的掺杂浓度对光致发光性质的影响,我们计算了 NaGd(MoO₄)₂: 5%Tb³⁺, x% Eu³⁺ 样品 486 nm 激发时发光的色坐标值,具体结果见表 1。利用表 1 中的数据我们绘制了各 样品的色坐标图,见图 6。从图 6 中可以看到,随着 Eu³⁺的掺杂浓度的提高,样品的发光颜色能从绿色 调节到红色。当掺杂浓度为 1% Eu³⁺, 5% Tb³⁺时,样品的色坐标值(0.466, 0.524),接近 YAG: Ce 黄色荧光 粉的色坐标(0.461, 0.525)。NaGd(MoO₄)₂: Tb³⁺, Eu³⁺样品的发光中具备红光和绿光成分所以这种荧光粉可 以与蓝光 GaN 芯片相结合的制成三基色白光 LED 系统,克服 YAG: Ce 黄色荧光粉显色性不足的缺点。

Figure 6. CIE chromaticity coordinates of NaGd(MoO₄)₂: 5% Tb³⁺, x% Eu³⁺ (x = 0 - 10) 图 6. NaGd(MoO₄)₂: 5% Tb³⁺, x% Eu³⁺ (x = 0~10). 样品的色坐标图

 Table 1. The CIE (Commission International del'Eclairage) chromaticity coordinates of NaGd(MoO₄)₂: 5% Tb³⁺, x% Eu³⁺ (x

 = 0 - 10)

 = 1. NaGd(MaO₄) : 5% Tb³⁺, x% Eu³⁺ (x = 0, 10), ## B bb fb db t= /#

	$_{4})_{2}$: 5% 10 ,	X%EU (X	= 0~10)、作手口	的巴奎尔值				
浓度(x%)	0	0.3	0.5	1	3	5	7	10
x	0.361	0.401	0.429	0.473	0.586	0.616	0.626	0.636
У	0.629	0.592	0.564	0.521	0.411	0.382	0.372	0.362

另外通过调整 Eu³⁺的浓度可以实现样品发光颜色从绿到红的连续可调,NaGd(MoO₄)₂: 5%Tb³⁺, x%Eu³⁺荧 光粉也有潜力应用于光学防伪标识材料。

4. 结语

本文采用水热法成功合成了 NaGd(MoO₄)₂: 5% Tb³⁺, x% Eu³⁺荧光粉。采用 X 射线衍射(XRD)对样品的结构进行了表征。通过分析样品的激发谱和发射谱研究了其光致发光性质。在 486 nm 激发波长下,样品的发射谱中观察到了从 Tb³⁺到 Eu³⁺有能量传递的过程。随着 Eu³⁺的浓度的增加,样品的发射光谱成分随之发生了变化,样品的发光颜色随着 Eu³⁺浓度的增加能够从绿色逐渐变为红色。其中 NaGd(MoO₄)₂: 1% Eu³⁺, 5% Tb³⁺样品的色坐标为(0.466, 0.524),接近 YAG: Ce 黄色荧光粉的色坐标值(0.461, 0.525) [15]。此外,所制备的材料发射光谱中具备红光和绿光成分,所以这种荧光粉可以与蓝光 GaN 芯片相结合,制成三基色白光LED 系统,有可能弥补传统 GaN 芯片+YAG: Ce 黄色荧光粉白光 LED 系统显色性不足的缺陷。另外发光

参考文献 (References)

 Zhang, Q., Meng, Q.Y. and Sun, W.J. (2013) The Concentration Dependence of Luminescent Properties for Eu³⁺ Doped CaWO₄ Micron Spherical Phosphors. *Journal of Optical Materials*, 35, 915-922. http://dx.doi.org/10.1016/j.optmat.2012.11.012

- [2] Zhang, Y. and Hao, J.H. (2013) Metal-Ion Doped Luminescent Thin Films for Optoelectronic Applications. *Journal of Materials Chemistry C*, 1, 5607-5618. <u>http://dx.doi.org/10.1039/c3tc31024h</u>
- [3] Zhang, Z.W., Ma, D.Q., Yue, Y., Ma, M.Z. and Liu, R.P. (2015) Wide-Band Excited LaBMoO₆:Eu³⁺ Red Phosphor for White-Light-Emitting Diode. *Journal of Alloys and Compounds*, 636, 113-116. http://dx.doi.org/10.1016/j.jallcom.2015.01.134
- [4] Wen, D.W., Feng, J.J., Li, J.H., Shi, J.X., Wu, M.M. and Su, Q. (2015) K₂Ln(PO₄)(WO₄):Tb³⁺, Eu³⁺ (Ln = Y, Gd and Lu) Phosphors: Highly Efficient Pure Red and Tuneable Emission for White Light-Emitting Diodes. *Journal of Materials Chemistry C*, **3**, 2107-2114.
- [5] Liu, Y., Liu, G.X., Wang, J.X., Dong, X.T. and Yu, W.S. (2014) Single-Component and Warm-White-Emitting Phosphor NaGd(WO₄)₂:Tm³⁺, Dy³⁺, Eu³⁺: Synthesis, Luminescence, Energy Transfer and Tunable Color. *Inorganic Chemistry*, **53**, 11457-11466. <u>http://dx.doi.org/10.1021/ic501284y</u>
- [6] Kang, F.W., Peng, M.Y., Zhang, Q.Y. and Qiu, J.R. (2014) Abnormal Anti-Quenching and Controllable Multi-Transitions of Bi³⁺ Luminescence by Temperature in a Yellow-Emitting LuVO₄:Bi³⁺ Phosphor for UV-Converted White LEDs. *Chemistry—A European Journal*, 20, 11522-11530. <u>http://dx.doi.org/10.1002/chem.201402081</u>
- [7] Hu, Y.S., Zhuang, W.D., Ye, H.Q., Wang, D.H., Zhang, S.S. and Huang, X.W. (2005) A Novel Red Phosphor for White Light Emitting Diodes. *Journal of Alloys and Compounds*, **390**, 226-229. <u>http://dx.doi.org/10.1016/j.jallcom.2004.07.063</u>
- [8] Liu, J., Lian, H.Z. and Shi, C.S. (2007) Improved Optical Photoluminescence by Charge Compensation in the Phosphor System CaMoO₄:Eu³⁺. *Journal of Optical Materials*, 29, 1591-1594. <u>http://dx.doi.org/10.1016/j.optmat.2006.06.021</u>
- [9] Jin, Y., Zhang, J.H., Hao, Z.D., Zhang, X. and Wang, X.J. (2011) Synthesis and Luminescence Properties of Clew-Like CaMoO₄:Sm³⁺, Eu³⁺. *Journal of Alloys and Compounds*, **509**, L348-L351. http://dx.doi.org/10.1016/j.jallcom.2011.07.047
- [10] Wang, X.F., Peng, G.H., Li, N., Liang, Z.H., Wang, X. and Wu, J.L. (2014) Hydrothermal Synthesis and Luminescence Properties of 3D Walnut-Like CaMoO₄:Eu³⁺ Red Phosphors. *Journal of Alloys and Compounds*, **599**, 102-107. <u>http://dx.doi.org/10.1016/j.jallcom.2014.02.091</u>
- [11] Xu, Z.H., Li, C.X., Li, G.G., Chai, R.T., Peng, C., Yang, D.M. and Lin, J. (2010) Self-Assembled 3D Urchin-Like NaY(MoO₄)₂:Eu³⁺/Tb³⁺ Microarchitectures: Hydrothermal Synthesis and Tunable Emission Colors. *Journal of Physical Chemistry C*, **114**, 2573-2582. <u>http://dx.doi.org/10.1021/jp9115029</u>
- [12] Tian, Y., Chen, B.J., Hua, R.N., Yu, N.S., Liu, B.Q., Sun, J.S., Cheng, L.H., Zhong, H.Y., Li, X.P., Zhang, J.S., Tian, B.N. and Zhong, H. (2012) Self-Assembled 3D Flower-Shaped NaY(WO₄)₂:Eu³⁺ Microarchitectures: Microwave-Assisted Hydrothermal Synthesis, Growth Mechanism and Luminescent Properties. *CrystEngComm*, **14**, 1760-1769. <u>http://dx.doi.org/10.1039/c1ce06232h</u>
- [13] Huang, S.H., Wang, D., Li, C.X., Wang, L.Z., Zhang, X., Wan, Y. and Yang, P.P. (2012) Controllable Synthesis, Morphology Evolution and Luminescence Properties of NaLa(WO₄)₂ Microcrystals. *CrystEngComm*, 14, 2235-2244. http://dx.doi.org/10.1039/c2ce06450b
- [14] Di, W.H., Wang, X.J., Zhu, P.F. and Chen, B.J. (2007) Energy Transfer and Heat-Treatment Effect of Photoluminescence in Eu³⁺-Doped TbPO₄ Nanowires. *Journal of Solid State Chemistry*, **180**, 467-473. <u>http://dx.doi.org/10.1016/j.jssc.2006.11.006</u>
- [15] Tian, Y., Qi, X.H., Wu, X.W., Hua, R.N. and Chen, B.J. (2009) Luminescent Properties of Y₂(MoO₄)₃: Eu³⁺ Red Phosphors with Flowerlike Shape Prepared via Coprecipitation Method. *Journal of Physical Chemistry C*, **113**, 10767-10772. <u>http://dx.doi.org/10.1021/jp901053q</u>