低品位氧化锌烟尘还原 - 精馏技术制备 超细锌粉

毕婷婷1*, 夏 妮2, 李桥龙2, 罗 通2, 谢容生3#

¹云南省生态环境工程评估中心,云南 昆明 ²中国电建集团北京勘测设计研究院有限公司,北京 ³云南东曼环保科技有限公司,云南 昆明 Email: ^{*}xiers90@sina.com

收稿日期: 2020年8月14日; 录用日期: 2020年8月26日; 发布日期: 2020年9月2日

摘要

采用还原 - 精馏技术对低品位氧化锌烟尘制备超细锌粉进行了工业化试验。结果表明,超细锌粉的含锌 纯度高达99.991%,锌直收率为93.199%。元素平衡结果表明,锌主要富集于产品超细锌粉中,铅元素 主要富集于高铅锌中,其占比为92.32%。利用低品位氧化锌烟尘制备超细锌粉工艺可行,有价金属回 收效果显著,能够为氧化锌烟尘高附加资源化利用提供参考。

关键词

氧化锌烟尘,低品位,超细锌粉,有价金属

Study on Preparation of Superfine Zinc Powder with the Reduction-Distillation Technique from Low-Grade Zinc Oxide Dust

Tingting Bi1*, Ni Xia2, Qiaolong Li2, Tong Luo2, Rongsheng Xie3#

¹Yunnan Appraisal Center for Ecological and Environment Engineering, Kunming Yunnan ²Beijing Engineering Corporation Limited, Beijing ³Yunnan Dongman Environmental Protection S&T Co., Ltd., Kunming Yunnan Email: [#]xiers90@sina.com

Received: Aug. 14th, 2020; accepted: Aug. 26th, 2020; published: Sep. 2nd, 2020

文章引用: 毕婷婷, 夏妮, 李桥龙, 罗通, 谢容生. 低品位氧化锌烟尘还原 - 精馏技术制备超细锌粉[J]. 冶金工程, 2020, 7(3): 155-162. DOI: 10.12677/meng.2020.73022

Abstract

Industrialization test of preparation of superfine zinc powder with the reduction-distillation technique from low-grade zinc oxide dust was carried out. The results showed that the purity of zinc in superfine zinc powder was 99.991%, and the direct yield of zinc was 93.199%. Moreover, the results of element balance indicated that zinc was mainly concentrated in superfine zinc powder, and lead was mainly concentrated in high lead and zinc, accounting for 92.32%. It was feasible to prepare superfine zinc powder from low-grade zinc oxide dust, and the recovery effect of valuable metals was remarkable. This study provides a reference for the high additional resource utilization of zinc oxide dust.

Keywords

Zinc Oxide Dust, Low-Grade, Superfine Zinc Powder, Valuable Metals

Copyright © 2020 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). <u>http://creativecommons.org/licenses/by/4.0/</u> CC Open Access

1. 引言

金属锌粉作为橡胶工业必不可少的添加剂,也被广泛用于涂料、医药、玻璃行业[1][2]。超细锌粉是 一种高性能金属材料,制备锌粉是开发利用锌资源,提高其附加值的有效途径[3]。制备超细锌粉的传统 工艺以粗锌为原料,对原料的要求高,对杂质的要求很严格[4][5],存在步骤复杂、能耗高、金属损耗严 重等不足[6]。随着我国工业对超细锌粉的需求不断增大,亟待开发短流程制备超细锌粉技术,提高其附 加值的有效途径,还有效避免了二次能源的浪费,降低了原料成本。有色冶炼过程产生大量的氧化锌烟 尘,富含锌金属元素,目前已有大量研究对其资源化利用以回收有价金属[7][8][9][10][11]。然而,利 用氧化锌直接制备超细锌粉的研究尚未有相关报道。本研究采用的还原 - 精馏技术制备超细锌粉工艺技 术,具有工艺流程简短、金属直收率高、且热能利用率高的优点,已建成工业化试验,以低品位氧化锌 烟尘为原料、焦炭为还原剂,结合有价金属铅、锌的高温挥发特性,探究超细锌粉的回收效果,研究结 果为氧化锌烟尘的资源化利用提供基础数据和参考借鉴。

2. 试验

2.1. 原料

试验采用的低品位氧化锌烟尘为灰黑色粉末,产自于云南省某铅锌冶炼企业,化学成分见表 1。其 主要化学成分主要为: Zn 32.40%、Pb 0.94%、S 19.98%、CaO 10.59%、MgO 0.93%、Al₂O₃ 1.12%、SiO₂ 3.75%、Fe 7.99%、As 0.28%、F 0.13%、Cl 0.14%。试验采用的还原剂焦炭化学成分见表 2。

 Table 1. Components of the low grade dust of zinc oxide

 表 1. 低品位氧化锌烟尘的化学成分(wt%)

元素	Zn	Pb	S	As	Mg	Ca	Al ₂ O ₃	Si	Fe	F	Cl
氧化锌	32.40	0.94	19.98	0.28	0.56	7.56	0.55	1.75	7.99	0.13	0.14

Table 2. Compor 表 2. 焦炭的成分	nents of the reduci 分分析	ng coke				
名称	水分(%)	挥发分(%)	灰分(%)	固定碳(%)	全硫(%)	热值(kCal/kg)
焦炭	17.21	3.9	23.91	72.19	0.52	6020.48

2.2. 工艺流程

采用低品位氧化锌烟尘制备超细锌粉,以实现锌、铅有价金属资源化利用。其工艺流程图见图 1。 在还原剂焦炭和助剂石灰的作用下,氧化锌烟尘在电炉还原挥发熔炉,转化为蒸汽形态,经过冷凝后流 入熔锌炉保温,脱除锌浮渣后转入铅塔,通过多次回流除铅形成高纯度锌蒸气,直接冷却形成的高纯度 金属锌粉。副产的锌浮渣和高铅锌可回用或外售,水淬渣用于生产建筑材料。

图 1. 超细锌粉制备工艺流程图

3. 理论分析

利用氧化锌烟尘铅锌制备超细锌粉是一个高温反应过程,铅、锌及其氧化物的物理特性对反应的影响甚大。其熔点、沸点及挥发情况见表 3。

Table 3. Melting point and boiling point of lead, zinc and their main compounds	
表 3. 铅、锌及其主要化合物的熔点和沸点	
	_

锌、铅及其化合物	Zn	ZnO	Pb	PbO
熔点(℃)	419.58	1975	327.5	886
沸点(℃)	906.97	/	1525	1472
挥发温度(℃)	>700	>1400	>900	>950

超细锌粉制备工艺反应过程中,氧化锌烟尘中金属氧化物与C直接发生还原反应,生成金属单质[9]。 随着反应进行,CO逐渐产生后参与反应,促进生产金属单质。其主要反应如下:

$$ZnO(s) + C(s) = Zn(g) + CO(g)$$
(1)

$$ZnO(s) + CO(s) = Zn(g) + CO_2(g)$$
⁽²⁾

$$PbO(s) + CO(g) = Pb(g) + CO_2(g)$$
(4)

炉料从 100℃逐渐加热到 1000℃,炉料中的 PbO 首先被还原,随着炉料温度的升高,经历固态 PbO 与 CO 反应生成固态 Pb、液态 Pb,液态 PbO 与 CO、C 反应生成液态 Pb 的过程。炉料加热到 1000℃~1300℃,炉料中 40%的 ZnO 被还原成 Zn,随着反应的进行,炉料熔化造渣,ZnO 会熔于渣中,还原变得越来越 难。因此,矿热电炉生产高纯锌粉的关键在于炉料造出较高熔点的渣,从而使得低温下炉料 ZnO 尽可能 多被还原成 Zn 蒸气[10]。

反应体系热量对物质的反应过程至关重要。采用 HSC 热力学计算软件(Chemistry7.0)对反应体系进行 热力学分析[12]。其热力学数据如表 4 所示,四个反应均为吸热反应,随着温度的升高,ΔG 逐渐减小。 随着温度的逐渐升高,反应(3)和(4)先发生,符合 Pb 的挥发温度较低的物理特性;氧化锌挥发为锌蒸气 的起始温度由反应(1)的关系曲线计算为 948℃。

ፐ (ኖር)		Δ	G	
1(0)	反应(1)	反应(2)	反应(3)	反应(4)
100	254.786	148.061	275.978	84.627
200	223.937	135.078	234.681	72.911
300	193.291	122.338	193.988	61.517
400	162.873	109.788	153.844	50.379
500	132.685	97.392	114.207	39.457
600	102.718	85.127	75.039	28.724
700	72.961	72.976	36.311	18.163
800	43.403	60.929	-2	7.763
900	14.034	48.977	-39.291	-2.174
1000	-15.154	37.115	-72.369	-10.051
1100	-44.168	25.338	-105.024	-17.759
1200	-73.017	13.643	-137.291	-25.315
1300	-101.704	2.03	-169.203	-32.734
1400	-130.236	-9.504	-200.788	-40.028
1500	-158.615	-20.959	-232.073	-47.209
1600	-186.847	-32.337	-263.083	-54.286

Table 4. Relationship between temperature and reduction reaction ΔG of lead and zinc oxides **表 4.** 铅、锌氧化物还原反应 ΔG 与温度的关系

注:表中热力学数据采用 HSC Chemistry 7.0 热力学模拟软件计算获得。

4. 结果与讨论

4.1. 运行情况

为充分对氧化锌烟尘中有价金属进行综合回收,采用还原-精馏工艺制备高附加值的超细锌粉,氧化 锌在电炉1000℃~1200℃温度下还原挥发后,经冷却直接进入熔锌炉保温,温度设为500℃,去除锌浮渣 后的锌液转入铅塔,在1100℃~1200℃温度下高温挥发,锌完全蒸发为蒸气,经过多次冷凝后冷却形成 超细锌粉;铅塔出口得到富集的高铅锌。氧化锌烟尘与焦炭的配比约为10:1,混合物料在整套设备的停 留时间约为6h,工艺运行期间,熔锌炉、铅塔运行稳定、温度正常,锌回收率高。

4.2. 超细锌粉回收效果

在中试运行期间超细锌粉的含量以及直收率见表 5,所得超细锌粉的纯度维持在 99.991%,而其直收 率高达在 93.199%。工艺回收效果显著,工艺条件稳定,能够实现氧化锌的资源化利用。

Table 5. Content and direct yield of superfine zinc powder 表 5. 超细锌粉的含量及其直收率

序号	锌含量(%)	直收率(%)
1	99.986	93.197
2	99.993	93.202
3	99.994	92.198
平均值	99.991	93.199

4.3. 副产物成分分析

高温条件下,有价金属铅、锌在挥发过程中会损耗部分金属,随电炉焙烧进入到水淬渣。熔锌炉保 温时,杂质元素随锌浮渣排出,同时带走大量的金属锌;铅塔在1100℃左右温度时,已经过提纯的锌挥 发为蒸气,金属铅随高铅锌从塔底排出。分别对产生的锌浮渣、高铅锌和水淬渣进行成分分析,结果如 表6所示。

 Table 6. The component of the water-quenched slag

 副产物	Zn	Pb	Fe	Al	Si	Ca	Mg	S
锌浮渣	41.50	1.19	2.40	/	/	/	/	0.23
高铅锌	21.50	54.19	1.03	/	/	/	/	/
水泙渣	0.20	0.04	24.82	2.19	6.40	8.43	1.40	1.40

表 6. 副产物成分分析(%)

4.4. 产品表征

4.4.1. 高纯锌粉粒径分析

本研究获得产品超细锌粉的粒度分布见图 2。不同粒径的产品数量与其粒度的对数函数成正态分布, 超细锌粉的粒径介于 2~20 µm,其中粒径为 8 µm 的锌粉累积分布高达 14%。本产品粒径大小均匀,说明 控制条件精准。

4.4.2. SEM 分析

超细锌粉分别在 1000 倍和 5000 倍电镜下的微观形貌见图 3。

Figure 2. Particle size distribution of superfine zinc powder 图 2. 超细锌粉粒径分布图

Figure 3. Scanning mirror diagram of superfine zinc powder 图 3. 超细锌粉的扫描电镜图

由图 3 可以看出,超细锌粉粒径分布比较均匀、颗粒大小相近、呈球形、表面杂质较少,而表面出现杂质的球形锌粉形状不规则。分析猜测,超细锌粉在冷凝成型时,其形状易受到杂质的影响,锌粉的形貌可能直接与其纯度存在联系。

5. 物料衡算

5.1. 总物料平衡

本研究采用低品位氧化锌烟尘作为原料、焦炭为还原剂、石灰为助剂,还原-蒸馏法工艺处理后产出 产品超细锌粉和副产物锌浮渣、高铅锌和水淬渣,并折算出烟气及其他损失。工艺的总物料平衡见表7。

	物料投入		物料产出			
项目	物料量(t)	比例	项目	物料量(t)	比例	
氧化锌烟尘	1000	85.03%	超细锌粉	302	25.60%	
焦炭	120	10.17%	水淬渣	574	48.64%	
石灰	60	5.08%	锌浮渣	42	3.56%	
			高铅锌	16	1.35%	
			烟气及其他损失	246	20.85%	
合计	1180	100%	合计	1180	100%	

Table 7. The total material balance 表 7. 总物料平衡

5.2. 元素平衡

低品位氧化锌烟尘制备超细锌粉工艺的锌、铅元素平衡分析见表8。

Table 8. Element balance of zinc and lead 表 8. 锌、铅元素平衡

项目 -		钉	· 	铅		
		金属量(t)	比例(%)	金属量(t)	比例(%)	
柳树木	氧化锌烟尘	324	100	9.40	100	
初科权八	合计	324	100	9.40	100	
	超细锌粉	301.97	93.20	0	0	
	水淬渣	1.15	0.35	0.23	2.45	
物料产出	锌浮渣	17.43	5.38	0.50	5.32	
	高铅锌	3.45	1.06	8.67	92.23	
	合计	141.7	100	9.34	100	

从表 8 可以看出,高温挥发后的锌主要进入主产品超细锌粉中,其比例高达 93.20%。水淬渣中的金属锌量很低,仅为总锌量的 0.35%。工艺处理过程的铅元素主要富集于高铅锌中,其占比为 92.32%,锌 浮渣中铅的比例达 5.32%,水淬渣固化的金属铅是总铅的 2.45%。元素平衡计算结果表明,该工艺能够实现有价金属铅、锌的高效回收。

6. 结论

1) 利用低品位氧化锌烟尘还原 - 精馏制备超细锌粉,产品纯度高达 99.991%,锌直收率为 93.199%, 表明还原 - 精馏工艺处理氧化锌烟尘制备超细锌粉是可行的。

2) 元素平衡结果表明,锌主要富集于产品超细锌粉中,铅元素主要富集于高铅锌中,其占比为92.32%。

3) 超细锌粉的制备工艺流程简单、操作简便,有价金属回收效果显著,能够为氧化锌烟尘高附加资 源化利用提供参考。

基金项目

省部共建复杂有色金属资源清洁利用国家重点实验室开放课题(CNMRCUKF1804); 云南省科技计划项目(2018FD137)。

参考文献

- [1] 侯新刚, 王胜, 王玉棉. 超细活性锌粉的制备与表征[J]. 粉末冶金工业, 2004, 14(1): 10-13.
- [2] 伍祥武. 优级细锌粉的生产实践[J]. 有色金属(冶炼部分), 2002(3): 42-44.
- [3] 刘全民, 王彦军, 张鑫, 等. 锌粉制备技术现状与趋势[J]. 南方金属, 2015(1): 1-3, 36.
- [4] 林峰, 雷晓旭, 王进保, 等. 超细锌粉的制备及其应用前景[J]. 材料保护, 2013, 46(5):48-51.
- [5] 王子谦, 王乐津. 锌锭反射炉法生产锌粉实践[J]. 有色冶炼, 1998, 27(1): 20-21.
- [6] 彭容秋. 锌冶金[M]. 长沙: 中南大学出版社, 2005.
- [7] 赵杨, 邢杰, 安俊菁, 等. 回转窑还原焙烧锌冶炼污泥与烟尘回收研究[J]. 有色金属(冶炼部分), 2017(2): 11-15.
- [8] 森维, 彭林, 雷胜, 等. 高铅氧化锌烟尘综合回收的生产实践与设计改进[J]. 有色金属(冶炼部分), 2015(1): 11-14.
- [9] 李哲雄, 王成彦, 尹锡矛, 等. 从含锗氧化锌烟尘中提取锌锗[J]. 有色金属(冶炼部分), 2017(9): 45-47, 53.
- [10] Zhang, L.B., Ma, A., Liu, C., et al. (2014) Dielectric Properties and Temperature Increase Characteristics of Zinc Oxide Dust from Fuming Furnace. Transactions of Nonferrous Metals Society of China, 24, 4004-4011. https://doi.org/10.1016/S1003-6326(14)63562-7
- [11] Li, X., Zhang, Y., Qin, B., et al. (2010) Indium Recovery from Zinc Oxide Flue Dust by Oxidative Pressure Leaching. Transactions of Nonferrous Metals Society of China, 20, s141-s145. <u>https://doi.org/10.1016/S1003-6326(10)60029-5</u>
- [12] 谢容生, 谢天鉴, 刘维维, 等. 锌冶炼石膏渣还原分解热力学分析[J]. 环境科学与技术, 2018, 41(2): 151-156.