Effect of SC Process on Microstructure of Nd_{9.8}Dy_{2.4}Fe_{71.8}Co₁₀B₆ Magnetic Powders

Min Liu, Weiping Gong, Yajie Li, Lixia Cheng

Electronic Functional Materials Laboratory, Huizhou University, Huizhou Guangdong Email: liumin19811001@163.com

Received: Jun. 10th, 2018; accepted: Jun. 25th, 2018; published: Jul. 3rd, 2018

Abstract

In this paper, the effects of SC (strip casting) process on casting piece composition, microstructure, grain size, anisotropy and magnetic properties of powders were investigated. The results indicated that for the copper wheel speed of 3 m/s, the X-ray diffraction diagram shows the diffraction peak of (221), (412) and (523), and no α -Fe diffraction peak for SC casting piece closing to the roller side. Thus SC alloy is directly carried out a modified HDDR process to prepare magnetic powders, and the magnetic powders contain Nd₂Fe₁₄B grains with a uniform size distribution from 200 nm to 300 nm, which is close to the single domain size of Nd₂Fe₁₄B phase. And thus grain owns smooth surface, and contacts directly with each other. There is no grain boundary phase between grains.

Keywords

SC Casting Piece, HDDR Process, Microstructure, Grain Size

SC工艺对Nd_{9.8}Dy_{2.4}Fe_{71.8}Co₁₀B₆磁粉微结构影 响的研究

刘 敏,龚伟平,李雅洁,程利霞

惠州学院,电子功能材料实验室,广东 惠州 Email:liumin19811001@163.com

收稿日期: 2018年6月10日; 录用日期: 2018年6月25日; 发布日期: 2018年7月3日

摘要

本文研究了SC (strip casting)工艺对Nd_{9.8}Dy_{2.4}Fe_{71.8}Co₁₀B₆合金铸片的成分、磁粉微结构、晶粒尺寸的影响。结果表明: 当辊轮转速v=3 m/s时, SC铸片紧贴辊轮的一面其X射线衍射图显示出(221)、(412)和

(523)面的衍射峰,没有α-Fe衍射峰。这样的SC合金铸片再进行优化的HDDR工艺处理所制备的磁粉,其 颗粒中包含的Nd₂Fe₁₄B晶粒尺寸分布均匀,大小为0.2~0.3 μm,接近单畴晶粒的大小,且晶粒表面光滑, 晶粒与晶粒间直接接触,不存在任何晶粒间界相。

关键词

SC铸片,HDDR工艺,微观结构,晶粒尺寸

Copyright © 2018 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). <u>http://creativecommons.org/licenses/by/4.0/</u>

CC O Open Access

1. 引言

利用铸锭合金直接进行 HDDR (Hydrogenation 氢化, Decomposition 歧化, Desorption 脱氢, Recombination 再结合)工艺处理既可以制备出各向同性 HDDR 磁粉[1] [2]也可以制备出各向异性 HDDR 磁粉[3] [4]。采用铸锭块状合金为原料,由于冷却速度慢,晶粒粗大,且含有软磁性相α-Fe,经改进的 HDDR 工艺处理后的磁能积仍然较低,一般为 120~200 kJ/m³ (15~25 GOe)左右,日本学者 Morimoto [5] 对速凝工艺(SC, Strip Casting)制备的 NdFeB 薄片进行适当的退火处理后再进行 HDDR 工艺处理,得到的 磁粉各向异性高,磁能积达到 388 kJ/m³ (48.7 MGOe),比一般块状铸锭经 HDDR 工艺制备磁体的性能高 许多,接近烧结 NdFeB 磁体的最佳性能。SC + HDDR 工艺是制备高性能粘结磁体的新工艺,尚未见到 国内关于采用 SC + HDDR 工艺制备高性能永磁材料的报道。本文研究了 SC 工艺条件对 Nd_{9.8}Dy_{2.4}Fe_{71.8}Co₁₀B₆铸片的成分、HDDR 磁粉晶粒尺寸以及微结构的影响。从而确定最佳的 SC 工艺,利用最佳的工艺制备的铸片进行优化的 HDDR 工艺处理,进而制备各向异性 HDDR 永磁材料。

2. 实验

采用真空电弧炉熔炼制备了 Nd_{9.8}Dy_{2.4}Fe_{71.8}Co₁₀B₆合金,所用原料为纯度 99.9%的 Nd 和 99.9%的 Dy, 以及 98.5%的 Fe-B (B 含量为 25 wt%)合金,为确保合金样品的均匀,合金铸锭经过多次熔炼。将熔炼得 到的合金铸锭表层打磨至露出金属光泽,然后破碎成小块,放入甩带机的石英管中。石英管中的铸锭块 在高频电流的作用下产生涡流而被加热融化,熔化的合金喷到高速旋转的辊轮上,其冷却(速凝)速度非常 快,合金结晶成为 0.23~0.34 mm 厚的 Nd_{9.8}Dy_{2.4}Fe_{71.8}Co₁₀B₆合金铸片(简称 SC 工艺),辊轮转速为 3 m/s~6 m/s,喷嘴宽度约为 1 mm,喷嘴与辊轮面的距离约为 3 mm,辊轮的转速高低可调整,快淬过程合理地控 制加热的温度和时间、喷嘴直径和喷嘴距辊面高度以及喷射压力等工艺参数(简称 SC 工艺)。铸片在真空 中加热至 800℃,在此温度和 1 bar 的氢气中歧化反应 1.5 h,接着在 820℃、0.1 bar 的氢气中先缓慢再结 合 0.5 h,再在高真空下快速再结合 1 h,最后经 Ar 气冷却而得到 HDDR Nd-Fe-B 磁粉(简称 HDDR 工艺, 如图 1 所示)。选取铁辊面有明显趋向组织的部分,并用粒度小于 1000 目的细砂纸均匀地打磨。用 X 射 线衍射仪(CuKa 靶)对各轮速下获得的铸片的急冷面进行衍射分析,扫描速度为 2°/min, 2θ 的范围为 28°~70°。测量 SC 薄带的相结构和硬磁性相织构;利用扫描电镜(SEM)观察合金铸片的微结构;用震动样 品磁强计(VSM)测量 HDDR 磁粉的磁滞回线以确定其磁性能。

3. 结果和讨论

当 SC 工艺的辊轮转速 v 分别为 3, 4, 5, 6 m/s 时, Nd_{9.8}Dy_{2.4}Fe_{71.8}Co₁₀B₆合金薄带紧贴辊轮的一面

其 X 射线衍射图如图 2 所示。实验表明: 当辊轮速度 v 为 3 m/s 时, X 射线衍射图显示出(221)、(412)和 (523)面的衍射峰,这表明合金凝固时沿 2:14:1 相的晶粒择优生长,表现出强烈 c 轴择优取向,形成明显 的织构特征。没有 α-Fe 衍射峰明,说明铸片工艺的快速冷却抑制了 α-Fe 的生成。随着辊轮速度不断增大, SC 铸片中开始出现 DyFe₅和 Nd₅Fe₁₇相晶粒的(200)和(717)面的衍射峰,且(412)面的衍射峰不断减弱,直 至最后消失,这表明快速的辊轮转速使得 2:14:1 相晶粒沿易轴方向的取向相对减弱。

图 3 为 SC Nd_{9.8}Dy_{2.4}Fe_{71.8}Co₁₀B₆ 合金薄带紧贴辊轮一面 Nd₂Fe₁₄B 晶粒的平均晶粒尺寸随辊轮速度的 变化关系曲线。利用 X 射线衍射数据(如图 1),采用谢乐公式分别计算了 Nd₂Fe₁₄B 晶粒的平均尺寸大小。 由图 2 显示的数据可见,随着辊轮速度增加,Nd₂Fe₁₄B 相的平均晶粒尺寸不断减小,这是由于随着辊轮 转速增大,合金的冷却速度变快,从而抑制了晶粒的生长。当辊轮速度 v 为 3 m/s 时,Nd_{9.8}Dy_{2.4}Fe_{71.8}Co₁₀B₆ 合金的平均晶粒尺寸为 0.5 μm。

当辊轮速度分别为 3 m/s 和 5 m/s 时,磁粉微结构如图 4 所示。显微组织观察表明:当辊轮速度为 3 m/s 时,磁粉颗粒中包含的 Nd₂Fe₁₄B 晶粒尺寸分布均匀,大小为 0.2~0.3 μm,接近单畴晶粒的大小。晶粒表 面光滑,晶粒与晶粒间直接接触,不存在任何晶粒间界相。当辊轮速度为 5 m/s 时,磁粉颗粒中包含的 Nd₂Fe₁₄B 晶粒尺寸分布不均匀,晶粒表面有易溶物析出,晶粒间存在晶粒间界相。

Figure 1. HDDR process diagram 图 1. HDDR 工艺图

Figure 2. When the roll rotation speed of SC process is 3, 4, 5, 6 m/s, the X ray diffraction pattern of Nd_{9.8}Dy_{2.4}Fe_{71.8}Co₁₀B₆ alloy ribbon attached to the roller side 图 2. 当 SC 工艺的辊轮转速 v 分别为 3, 4, 5, 6 m/s 时, Nd_{9.8}Dy_{2.4}Fe_{71.8}Co₁₀B₆ 合金薄带紧贴辊轮的一面其 X

DOI: 10.12677/mp.2018.84018

射线衍射图

Figure 3. Effect of roller speed on average grain size of Nd₂Fe₁₄B grain in the SC alloy ribbon 图 3. SC 合金薄带紧贴辊轮一面 Nd₂Fe₁₄B 晶粒的平均晶粒尺寸随辊轮速度的变化关系曲线

(a) v = 3 m/s

(b) v = 5 m/s

Figure 4. Microstructure of magnetic powder for roller speed of 3 m/s and 5 m/s 图 4. 当辊轮速度分别为 3 m/s 和 5 m/s 时,磁粉的显微组织结构

4. 结论

本文采用 SC + HDDR 工艺制备磁粉,研究了 SC 工艺辊轮转速对 Nd_{9.8}Dy_{2.4}Fe_{71.8}Co₁₀B₆ 合金铸片成 分、磁粉微结构、晶粒尺寸、磁粉各向异性及磁性能的影响。研究表明:合理地控制辊轮的转速,可以 使得铸片中只有 Nd₂Fe₁₄B 相,没有α-Fe 相。这样的铸片进行优化的 HDDR 工艺处理所制备的磁粉,其 颗粒中包含的 Nd₂Fe₁₄B 晶粒尺寸分布均匀,大小为 0.2~0.3 μm,接近单畴晶粒的大小。晶粒表面光滑, 晶粒与晶粒间直接接触,不存在任何晶粒间界相。磁粉具有显著的各向异性,磁能取最大值。

基金项目

国家自然科学基金项目(批准号: 51602376, 51602121)、广东省自然科学基金项目(2017A030310665)、

惠州市科技计划项目(批准号: 2011B020006008)、惠州学院(2015167, hzuxl201626)资助的课题。

参考文献

- [1] 麦杰平,李红卫,于敦波,等. HDDR 工艺对各向同性 NdFeB 磁粉性能的影响[J]. 稀有金属, 2011, 35(6): 855-859.
- [2] Ding, J., McCormick, P.G. and Street, R. (1993) Remanence Enhancement in Mechanically Alloyed Isotropic Sm₇Fe₉₃-Nitride. *Journal of Magnetism and Magnetic Materials*, **124**, 1-4.
- [3] Nakamura, H., Kato, K., Book, D., *et al.* (1999) Enhancement of Coercivity in High Remanence HDDR Nd-Fe-B Powders. *IEEE Transactions on Magnetics*, **35**, 5. <u>https://doi.org/10.1109/20.800496</u>
- [4] Sugimoto, S., koike, N., Book, D., et al. (2002) An Improved HDDR Treatment for the Production of Anisotropic Nd-Fe-B Ternary Powders. Journal of Alloys and Compounds, 330-332, 892-896. https://doi.org/10.1016/S0925-8388(01)01503-1
- [5] Morimoto, K., Kato, K., Igarashi, K., et al. (2004) Magnetic Properties of Anisotropic Nd-Fe-B HDDR Powders Prepared from Strip Cast Alloys. Journal of Alloys and Compounds, 366, 274-278. https://doi.org/10.1016/S0925-8388(03)00756-4

知网检索的两种方式:

- 打开知网页面 <u>http://kns.cnki.net/kns/brief/result.aspx?dbPrefix=WWJD</u>下拉列表框选择: [ISSN],输入期刊 ISSN: 2161-0916,即可查询
 打开知网首页 <u>http://cnki.net/</u>
- 左侧 "国际文献总库"进入,输入文章标题,即可查询

投稿请点击: <u>http://www.hanspub.org/Submission.aspx</u> 期刊邮箱: <u>mp@hanspub.org</u>