Inverse Problems of Boundary Flux in the Two-Dimensional Convection-Diffusion Equation in a Rectangular Domain

Oian Liu

Shandong Foreign Trade Vocational College, Tai'an Campus, Tai'an Shandong Email: liuqianamao@163.com

Received: Oct. 9th, 2018; accepted: Oct. 24th, 2018; published: Oct. 31st, 2018

Abstract

This article deals with an inverse problem of determining the boundary flux in the two-dimensional convection-diffusion equation in a rectangular domain. Similarly to the method used in my previous paper, a conditional uniqueness and Lipschitz stability for the inverse boundary problem are proved based on a variational identity and controllability to an adjoint problem. Moreover, the ADI scheme is applied to solve the forward problem, and numerical inversions are performed also utilizing the homotopy regulrizarion algorithm.

Keywords

Convection-Diffusion Equation, Boundary Flux, Inverse Problem, Variational Adjoint Problem, Conditional Uniqueness, Lipschitz Stability, Numerical Inversion

矩形域上的二维对流扩散方程边界流量反问题

刘倩

山东外贸职业学院泰安校区,山东 泰安 Email: liuqianamao@163.com

收稿日期: 2018年10月9日: 录用日期: 2018年10月24日: 发布日期: 2018年10月31日

摘要

对于给出的二维对流扩散方程,考虑一个确定边界流量的反问题。应用变分伴随方法,基于联系附加数据和未知边界流量的变分恒等式,证明反问题解的条件唯一性,并建立反问题的Lipschitz稳定性。基于

文章引用: 刘倩. 矩形域上的二维对流扩散方程边界流量反问题[J]. 应用数学进展, 2018, 7(10): 1357-1367. DOI: 10.12677/aam.2018.710158

ADI差分方法对正问题进行数值求解,并利用同论正则化方法对边界流量进行数值反演。

关键词

对流扩散方程,边界流量,反问题,变分伴随方法,条件唯一性,Lipschitz稳定性,数值反演

Copyright © 2018 by author and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Open Access

1. 引言

近年来,研究大气污染物的构成、污染物的运移和扩散规律成为各个研究领域普遍关注的问题。从 大气污染物的运移扩散规律入手,构建符合实际的污染物对流扩散模型,并基于有限的观测数据能够确 定模型中难以直接测量的关键参数,这对于研究解决大气污染问题具有重要意义和应用价值。

对流扩散方程是一类基本的运动方程,可用于描述大气污染物的扩散规律[1]。但是,实际问题中,扩散方程往往有一些难以直接测量得到的参数,或者需要付出很高代价才能得到的参数。这时,根据污染物的实测结果,再结合合理的附加数据信息,进而科学确定未知的初始条件、边界条件等关键参数就显得非常重要。这也为相关问题的研究提供了极大的便利。

根据反问题求解内容的不同,可将其分为参数反问题、源项反问题、边界条件反问题、初始条件反问题等[2]。本文主要研究边界条件反问题。

假设大气环境系统控制方程结构、参数、初始条件是一致的,根据实测数据确定边界条件,这样的问题称为边界条件反问题[3] [4]。例如,由规定的出流边界处的污染物浓度标准,推求入流边界的污染物限制浓度,以此确定空气污染物排放标准,这就是典型的大气环境边界反问题。金忠青等应用脉冲谱一优化法、Green 函数法对二维对流扩散方程边界条件反问题进行了求解。韩龙喜等,从局部的解出发,在稳态条件下,反演了边界浓度。

目前为止,对于源项反演[5][6]的问题居多,对于边界反问题的研究却并不多见。事实上,对于大气污染物的研究与防治问题,由一致边界或者内部测量值为观测数据,反演初始边界处的污染物分布情况,更具现实意义。本文将继续利用变分伴随方法[7]-[13]对矩形域上的二维对流扩散方程反问题进行研究,主要考虑对其边界流量进行反演,并确定其反问题解的存在唯一性[14]。当边界流量函数与时间-空间均有关时,证明反问题的条件适定性[15],并给出数据随机扰动条件下的数值反演算例。

2. 正问题与反问题

对于给定的 T>0 及 $l_1, l_2>0$,记 $\Omega_T=(0, l_1)\times(0, l_2)\times(0, T)$,考虑在矩形域上的二维对流扩散方程: $u_t-D\Delta u+vu_x=0,\; (x,y,t)\in\Omega_T, \tag{2.1}$

其中(x,y) \in Ω , t>0 ; Ω 为矩形域; 其中 Γ_1 为 Ω 的左边界,表示为 $\Gamma_1 := \{x=0\}$; Γ_2 为 Ω 的右边界, $\Gamma_2 := \{x=l_1\}$; Γ_3 为 Ω 的上边界, $\Gamma_3 := \{y=l_2\}$; Γ_4 为 Ω 的下边界 $\Gamma_4 := \{y=0\}$, D>0 是大气污染物的扩散系数, v>0 是污染物沿着 X 轴方向的对流速度(假设只有横向风影响,污染物浓度分布均匀)。下面给出方程(2.1)的初边值条件:

给定初始条件:

$$u(x, y, 0) = 0, \quad 0 \le x \le l_1, \ 0 \le y \le l_2.$$
 (2.2)

假设左边界处的污染物通量是已知的,即

$$(uv - Du_x)\Big|_{\Gamma_1} = \overline{f}(y,t), \quad 0 \le y \le l_2, 0 \le t \le T.$$
 (2.3)

上式两端同时除以 D,有 $\left(u\frac{v}{D}-u_x\right)\Big|_{\Gamma_t}=\frac{\overline{f}(y,t)}{D}$ 。

令
$$h = \frac{v}{D} > 0$$
, $f(y,t) = \frac{\overline{f}(y,t)}{D}$, 则有:

$$\left(hu - u_x\right)\Big|_{\Gamma_1} = f\left(y, t\right)$$

左边界条件化为:

$$u_x(x, y, t)|_{\Gamma_t} = hu(0, y, t) - f(y, t)$$
 (2.4)

其他三个边界条件如下:

$$u_x(x, y, t)\Big|_{\Gamma_2} = 0, 0 \le t \le T.$$
 (2.5)

$$u_{y}(x, y, t)\Big|_{\Gamma_{1}, \Gamma_{4}} = 0, 0 \le t \le T.$$
 (2.6)

如果,二维对流扩散方程的扩散系数,初边值函数以及源项等参数是已知的。则由(2.1)~(2.6)构成一个适定的正问题,可以求得在 Ω_T 上的浓度分布 u(x,y,t)。现在设模型中有界域的部分边界 Γ_1 处的溶质通量 f = f(x,y) 未知,给定右边界 Γ_2 处的污染物浓度作为附加数据:

$$u(x,y,t)\Big|_{\Gamma_2} = g(y,t). \tag{2.7}$$

则由(2.1)~(2.6)联合附加数据(2.7)形成一个确定左边界溶质通量 f = f(x,y)的反问题。在以下的探讨过程中,将说明反问题的解是存在的,进而利用伴随方法证明反问题解的唯一性。

3. 正问题的伴随问题

定理 3.1 [7]: 设正问题(2.1)~(2.6)是适定的,对于给定的 f = f(x,y),设 $u_i = u(f_i)(x,y,t)$ (其中, $u(f_i)(x,y,t)$ 是线性的)是对应于边界溶质通量函数 $f_i(x,y)(i=1,2)$ 的正问题的解,而 $h_i(x,y)(i=1,2)$ 是相应的右边界浓度测量值(即附加数据),则有变分恒等式:

$$\int_{0}^{T} \int_{0}^{l_{2}} \varphi(0, y, t) (f_{1} - f_{2}) dy dt = \int_{0}^{T} \int_{0}^{l_{2}} w(y, t) (g_{1} - g_{2}) dy dt$$
(3.1)

其中 $\varphi(w)$ 表示一个由输入函数w=w(x,y)所控制的伴随问题的解。

证明: 令 $U = u_1 - u_2$, 那么它满足以下定解条件:

$$\begin{cases}
U_{t} - D\Delta U + vU_{x} = 0, \\
U(x, y, t)|_{t=0} = 0, \\
U_{x}(x, y, t)|_{\Gamma_{1}} = hu(x, y, t)|_{\Gamma_{1}} - f(y, t), \\
U_{x}(x, y, t)|_{\Gamma_{2}} = 0, \\
U_{y}(x, y, t)|_{\Gamma_{3}, \Gamma_{4}} = 0.
\end{cases}$$
(3.2)

而且,有附加数据

$$U(x,y,t)\Big|_{\Gamma_2} = g_1 - g_2$$

取函数 $\varphi = \varphi(x, y, t)$, (3.2)中方程两端同时乘以 φ , 并且在 Γ_T 上积分, 有

$$\int_{\Omega_{T}} (U_{t} - D\Delta U + vU_{x}) \varphi dxdydt = 0.$$

对其进行分部积分,有

$$\begin{split} &-\int_{\Omega_{T}}U\left[\varphi_{t}+D\Delta\varphi+v\varphi_{x}\right]\mathrm{d}x\mathrm{d}y\mathrm{d}t+\int_{\Omega}\left[U\left(x,y,T\right)\varphi\left(x,y,T\right)-U\left(x,y,0\right)\varphi\left(x,y,0\right)\right]\mathrm{d}x\mathrm{d}y\\ &-\int_{0}^{T}\int_{0}^{t_{2}}\left[D\left(\varphi U_{x}\big|_{\Gamma_{2}}-\varphi U_{x}\big|_{\Gamma_{1}}+\varphi_{x}U\big|_{\Gamma_{1}}-\varphi_{x}U\big|_{\Gamma_{2}}\right)+v\left(\varphi U\big|_{\Gamma_{2}}-\varphi U\big|_{\Gamma_{1}}\right)\right]\mathrm{d}y\mathrm{d}t\\ &-\int_{0}^{T}\int_{0}^{t_{1}}\left[D\left(\varphi U_{y}\big|_{\Gamma_{3}}-\varphi U_{y}\big|_{\Gamma_{4}}-\varphi_{y}U\big|_{\Gamma_{3}}+\varphi_{y}U\big|_{\Gamma_{4}}\right)\right]\mathrm{d}x\mathrm{d}t=0. \end{split}$$

 $\phi = \varphi(w)(x, y, t)$ 是下述定解问题的一个解

$$\begin{cases} \varphi_{t} + D\Delta\varphi + v\varphi_{x} = 0, & (x, y, t) \in \Omega_{T}, \\ \varphi(x, y, t)|_{t=T} = 0, & (x, y) \in \Omega, \\ \varphi_{x}(x, y, t)|_{\Gamma_{1}} = 0, & t \in [0, T], \end{cases}$$

$$\begin{cases} \varphi_{y}(x, y, t)|_{\Gamma_{3}} = 0, & t \in [0, T], \\ \varphi_{y}(x, y, t)|_{\Gamma_{4}} = 0, & t \in [0, T], \end{cases}$$

$$(3.3)$$

$$\begin{cases} \varphi_{x}(x, y, t)|_{\Gamma_{4}} + h\varphi(x, y, t)|_{\Gamma_{2}} = w(y, t), & (x, y) \in \Omega. \end{cases}$$

其中w = w(x,y)是一个可控制的输入函数,定解问题(3.3)称为正问题的定解问题。

利用(3.2)和(3.3)的初边值条件和附加数据,可得积分恒等式

$$\int_0^T \int_0^{l_2} \varphi(0, y, t) (f_1 - f_2) dy dt = \int_0^T \int_0^{l_2} w(y, t) (g_1 - g_2) dy dt.$$

证毕。

4. 反问题解的条件唯一性

记 $\Gamma_2^T = \Gamma_2 \times (0,T]$ 。设 $S_E = \{ f \in L^2(\Omega) : \|f\|_2 \le E \}$ 为源项强度函数的容许集, 其中 E > 0 为一个正常数。则 对于任意 $f \in S_E$, 正问 题有 唯一解, 记为 u(f)(x,y,t) 。 联系到附加数据条件, 定义映射 $G: L^2(\Omega) \to L^2(\Gamma_2^T)$:

$$G[f] := u(f)\Big|_{\Gamma_2} = g(y,t), (y,t) \in \Gamma_2^T.$$

$$\tag{4.1}$$

据此,反问题(2.1)~(2.7)可以化为算子方程的求解问题。从数值求解的角度,该反问题又可转化为如下带正则化的极小问题

$$\min_{f \in S_n} \left\{ \|G[f] - g\|_2^2 + \alpha \|f\|_2^2 \right\},\tag{4.2}$$

其中 $\alpha > 0$ 是正则参数。

对于一般的抛物型方程也是成立的。该引理说明对于一个齐次的线性热传导过程,终值时刻的分布可以由边界值近似控制[16]。

证明反问题解的唯一性即证明当且仅当 $f_1 = f_2$ 时, $G[f_1] = G[f_2]$ 。

定理 4.1: 在定理 3.1 的条件下,存在 $M_0>0$ 及某个子区域 $\Omega_0\subset\Omega$,使得成立 $\left(f_1-f_2\right)\big|_{\Omega_0}\geq M_0>0$,

则必有

$$g_1(y,t) \neq g_2(y,t), \forall (y,t) \in \Gamma_2^T$$

定理证明过程同[14]。

5. 反问题的条件稳定性

引理 5.1 [17]: 设 Ω 为一个正测度有界区域,假设当 $x \in \Omega$ 时, $f(x) \in L^2(\Omega)$ 且 $f(x) \ge 0$,那么,如果当 $\int_{\Omega} f(x) = 0$ 时, f(x) = 0 。

为了构成反问题解的稳定性条件,还需要一些已知和未知的数据函数。对于未知的溶质通量 $f \in S_E$,假设 $f(y,t) \ge 0$,且当 $(y,t) \in \Gamma_1'$ 时, $f \ne 0$ 。基于变分恒等式(3.1),定义一个有关溶质通量 f(y,t)和控制输入 w(y,t) 的双线性函数:

$$\mathcal{B}(f,w) = \int_{\Gamma_{\tau}^{T}} f(x,y) \varphi(w)(0,y,t) \, \mathrm{d}y \, \mathrm{d}t, \tag{5.1}$$

其中 $\varphi(w)(x,y,t)$ 是由边界输入函数w(y,t), $(y,t) \in \Gamma'_1$ 确定的伴随问题(3.3)的解。不难看出双线性函数 $\mathcal{B}(f,w)$ 关于f,w是线性的。因而,可以定义关于溶质通量的范数:

$$||f||_{\mathcal{B}} := \sup_{w > 0, w \neq 0} \frac{|\mathcal{B}(f, w)|}{||w||_{2}}.$$
 (5.2)

下面给出一个命题。

命题 5.1: 关于双线性函数 $\mathcal{B}(f, w)$ 的范数(5.2)是合理的。

证明: 1) 绝对均匀性。对于任意的 $\lambda \in R$, 显然有

$$\|\lambda f\|_{\mathcal{B}} = \sup_{w>0, w\neq 0} \frac{|\mathcal{B}(\lambda f, w)|}{\|w\|_{2}} = |\lambda| \|f\|_{\mathcal{B}}.$$

2) 三角不等式。对于任意的 $f_1, f_2 \in S_E$, 范数具有线性积分可加性,即

$$\|f_1 + f_2\|_{\mathcal{B}} := \sup_{w > 0, w \neq 0} \frac{\left|\mathcal{B}(f_1 + f_2, w)\right|}{\|w\|_2} \le \|f_1\|_{\mathcal{B}} + \|f_2\|_{\mathcal{B}}.$$

3) 非负和分离点。显然 $\|f\|_{\mathcal{B}} \ge 0$ 成立,我们需要证明如果 $\|f\|_{\mathcal{B}} = 0, (y,t) \in \Gamma_1'$, f = 0 成立。 令 $\|f\|_{\mathcal{B}} = 0, (y,t) \in \Gamma_1'$,则有

$$\left| \int_{\Gamma_1^T} f(x, y) \varphi(w)(0, y, t) dy dt \right| = 0$$
 (5.3)

根据抛物型方程的极小值原理可知,如果 w(y,t)>0 , $(y,t)\in\Gamma_1'$,那么伴随问题(3.3)的解 $\varphi(w)(x,y,t)>0$ 。又因为 $f(y,t)\geq 0$,结合(3.3)式,有

$$\int_{\Gamma_{t}^{T}} f(x, y) \varphi(w)(0, y, t) dy dt = 0$$
(5.4)

那么,由引理 5.1 可知, $f(y,t)=0, (y,t)\in\Gamma_1^t$ 或者 $\varphi(w)(0,y,t)=0, (y,t)\in\Gamma_1^T$ 。因为 w>0且 $w\neq0$,由极大-极小值原理,成立当 $(x,y,t)\in\Omega_T$ 时 $\varphi(w)(x,y,t)>0$,进而有 $\varphi(w)(0,y,t)>0, (y,t)\in\Gamma_1^T$ 。所以,肯定存在 $(y,t)\in\Gamma_1^T$ 使得 f=0。所以,(5.2)定义的范数是合理的。

定理 5.1: 在定理 3.1 的条件下,对于 $f \in S_E$,存在 $(y,t) \in \Gamma_1^T$ 上的常数 D,使得成立

$$||f_1 - f_2||_{\mathcal{B}} \le D ||g_1 - g_2||_{L^2(\Gamma_2^T)}$$
 (5.5)

这里的范数 || ⋅ || ₂ 是由(5.2)定义的。

证明:基于范数定义(5.2)和变分恒等式(3.1),应用 Cauchy-Schwartz 不等式有

$$||f_1 - f_2||_{\mathcal{B}} = \sup_{w > 0, w \neq 0} \frac{\left| D \int_{\Gamma_2^T} (g_1 - g_2)(y, t) w(y, t) dy dt \right|}{||w||_2} \le D ||g_1 - g_2||_{L^2(\Gamma_2^T)}. \tag{5.6}$$

结论成立。

6. 正问题数值解

利用 ADI 差分法[18]求解正问题(2.1)~(2.6)。首先对求解区域进行网格剖分取空间步长 h=l/M,时间步长 $\tau=T/N$ 离散网格,可以记作: $x_i=ih$, $y_j=jh$, $t_n=n\tau$,其中 $0\leq i,j,n\leq M$ 。将区域剖分成 M^2 个小正方形, $u_{i,j}^n \in u(x_i,y_i,t_n)$ 的近似值,则原方程可以离散为如下格式:

首先,从 t_n 到 $t_{n+1/2}$,x方向采用隐式格式,y方向采用显式格式,有:

$$\begin{split} \frac{\partial u}{\partial t}\bigg|_{i,j}^{n} &\approx \frac{u_{i,j}^{n+1/2} - u_{i,j}^{n}}{\tau/2} = \frac{2}{\tau} \Big(u_{i,j}^{n+1/2} - u_{i,j}^{n}\Big);\\ &\frac{\partial u}{\partial x}\bigg|_{i,j}^{n+1/2} \approx \frac{u_{i+1,j}^{n+1/2} - u_{i-1,j}^{n+1/2}}{2h};\\ D\frac{\partial}{\partial x} \bigg(\frac{\partial u}{\partial x}\bigg)\bigg|_{i,j}^{n+1/2} &\approx \frac{D}{h^{2}} \Big(u_{i+1,j}^{n+1/2} - 2u_{i,j}^{n+1/2} + u_{i-1,j}^{n+1/2}\Big);\\ D\frac{\partial}{\partial y} \bigg(\frac{\partial u}{\partial y}\bigg)\bigg|_{i,j}^{n} &\approx \frac{D}{h^{2}} \Big(u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}\Big); \end{split}$$

将以上格式带入二维对流-扩散方程,得到差分格式:

$$\begin{split} &\left(-\frac{\tau D}{2h^2}-\frac{v}{4h}\right)u_{i-1,j}^{n+1/2}+\left(1+\frac{\tau D}{2h^2}\right)u_{i,j}^{n+1/2}+\left(\frac{v}{4h}-\frac{\tau D}{2h^2}\right)u_{i+1,j}^{n+1/2}\\ &=\frac{\tau D}{2h^2}u_{i,j-1}^n+\left(1-\frac{\tau D}{h^2}\right)u_{i,j}^n+\frac{\tau D}{2h^2}u_{i,j+1}^n. \end{split}$$

据此,可以得到x方向的线性方程组

$$Au_1 = c \tag{6.1}$$

其次,从 $t_{n+1/2}$ 到 t_{n+1} , y方向采用隐式格式, x方向采用显式格式, 有:

$$\begin{split} \frac{\partial u}{\partial t}\bigg|_{i,j}^{n+1} &\approx \frac{u_{i,j}^{n+1} - u_{i,j}^{n+1/2}}{\tau/2} = \frac{2}{\tau} \Big(u_{i,j}^{n+1} - u_{i,j}^{n+1/2} \Big); \\ &\frac{\partial u}{\partial x}\bigg|_{i,j}^{n+1/2} \approx \frac{u_{i+1,j}^{n+1/2} - u_{i-1,j}^{n+1/2}}{2h}; \\ D\frac{\partial}{\partial x} \bigg(\frac{\partial u}{\partial x} \bigg)\bigg|_{i,j}^{n+1/2} &\approx \frac{D}{h^2} \Big(u_{i+1,j}^{n+1/2} - 2u_{i,j}^{n+1/2} + u_{i-1,j}^{n+1/2} \Big); \\ D\frac{\partial}{\partial y} \bigg(\frac{\partial u}{\partial y} \bigg)\bigg|_{i,j}^{n+1} &\approx \frac{D}{h^2} \Big(u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1} \Big); \end{split}$$

将以上格式带入二维对流-扩散方程,得到差分格式:

$$\begin{split} &\left(\frac{\tau D}{2h^2} + \frac{\tau v}{h}\right) u_{i-1,j}^{n+1/2} + \left(1 - \frac{\tau D}{h^2}\right) u_{i,j}^{n+1/2} + \left(\frac{\tau D}{2h^2} - \frac{\tau v}{h}\right) u_{i+1,j}^{n+1/2} \\ &= -\frac{\tau D}{2h^2} u_{i,j-1}^{n+1} + \left(1 + \frac{\tau D}{2h^2}\right) u_{i,j}^{n+1} - \frac{\tau D}{2h^2} u_{i,j+1}^{n+1}. \end{split}$$

据此,可以得到 y 方向的线性方程组

$$Au_2 = c ag{6.2}$$

(6.1)和(6.2)均为三对角线性方程组,具有一维隐式形式,上述离散格式是无条件稳定的[19][20][21]。

7. 反问题的条件稳定性

7.1. 正问题的数值模拟

考虑矩形区域内二维对流-扩散方程,即(2.1)~(2.6),同样利用有限差分方法进行数值计算。取 $l_1 = l_2 = T = 1$,D = 0.01,v = 0.001,精确解为

$$u(x, y, t) = t\left(\frac{1}{2}x^2 - x + 1\right)\left(\frac{1}{3}y^3 - \frac{1}{2}y^2\right)$$

则源项为:

$$s(x,y,t) = \left[\frac{1}{2}x^2 - x + 1 - Dt + vt(x-1)\right] \left(\frac{1}{3}y^3 - \frac{1}{2}y^2\right) - Dt\left(\frac{1}{2}x^2 - x + 1\right)(2y-1).$$

设 $u^*(x,y,t)$ 为由上述差分格式求得的数值解,精确解与数值解的相对误差为

$$Err = \frac{\|u(x, y, t) - u^*(x, y, t)\|_2}{\|u(x, y, t)\|_2},$$
(7.1)

表 1 和表 2 分别给出不同空间步长和时间步长的数值计算结果。

进一步,取空间步长 $h_x = h_y = 1/30$,时间步长 $\tau = 1/100$,D = 0.1 ,v = 0.01 ,图 1 给出在终止时刻 t = 0.5 时的数值解和解析解图像。

Table 1. Effect of space step on error ($\tau = 1/100, t = 0.5$)

表 1. 空间步长对误差的影响($\tau = 1/100, t = 0.5$)

$h_{x} = h_{y}$	1/10	1/20	1/30	1/40	1/50
Err	1.42145e-2	1.41261e-2	1.38718e-2	1.27718e-2	1.15424e-2

Table 2. Effect of time step on error ($h_x = h_y = 1/20, t = 1$)

表 2. 时间步长对误差的影响 $(h_x = h_y = 1/20, t = 1)$

τ	1/50	1/100	1/150	1/200	1/300
Err	2.4013e-2	2.40086e-2	2.40044e-2	2.39963e-2	2.39751e-2

由表 1 和表 2 可以看出,误差随着时间空间步长的减小而有所减小,并且改变空间步长更能影响解。通过以上计算和图 1 可以看出,数值解较好地吻合精确解。

7.2. 确定边界流量反问题的数值模拟

算例 1:

对于 7.1 中提出的联合附加数据的反问题,在不加扰动的情况下,应用同伦正则化算法[18]对上述确定边界流量的反问题进行数值模拟。

假设真解 $f(y)=1+y+2y^2+y^3$,并在解空间 $\Phi^4=span\{1,y,y^2,y^3\}$ 中展开,即真解 a=(1,1,2,1),结合以上算法,当 t=T 时,在边界 $\Gamma_2:=\{x=1,0\leq y\leq 1\}$ 上取附加数据

$$g(y) = u(1, y_j, T), j = 1, 2, \dots, M - 1,$$
 (7.2)

其中空间步长 $h_x = h_y = 1/20$, 时间步长 $\tau = 1/100$ 。

考察初始迭代对反演算法的影响,取扩散系数 D=1,对流速度 v=1,微分步长 $\omega=0.01$,迭代收敛 精度 eps=le-6,反演计算结果列于表 3,其中 a^0 表示初始迭代, a^{inv} 表示反演解,Err 表示反演解与真解的误差。

Table 3. Influence of initial iteration on inversion results (without perturbation) **表 3.** 初始迭代对反演结果的影响(不加扰动)

a^0	a^{inv}	E_{rr}
(0, 0, 0, 0)	(1.0, 1.0, 2.0, 1.0)	1.2511e-006
(0.2, 0.3, 0.5, 0.1)		9.0403e-007
(1.0, 1.0, 1.0, 1.0)		1.2545e-006
(1.5, 2.0, 1.2, 1.0)	(1.0, 1.0, 2.0, 1.0)	1.7757e-006
(2.0, 2.0, 2.0, 2.0)	(1.0, 1.0, 2.0, 1.0)	1.2579e-006
(2.0, 2.0, 3.0, 2.0)	(1.0, 1.0, 2.0, 1.0)	2.0000e-003

Table 4. Influence of convergence precision on inversion results (without perturbation) 表 4. 收敛精度对反演算法的影响(不加扰动)

eps	a^{inv}	Err	n
le-2	(1.35378, 1.27015, 1.19146, 1.11808)	9.0350e-002	3
le-3	(0.999997, 1.00001, 1.99998, 1.00001)	2.4759e-005	40
le-4	(1.0, 1.0, 2.0, 1.0)	1.2511e-006	41
le-5	(1.0, 1.0, 2.0, 1.0)	3.9120e-008	42

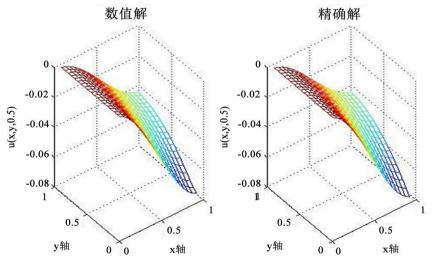


Figure 1. Images of numerical and exact solutions (D = 0.1, v = 0.01, t = 0.5) **图 1.** 数值解与精确解图像(D = 0.1, v = 0.01, t = 0.5)

由表 3 可以看出,初始迭代值对算法的实现有一定的影响,初始迭代值与真解的差距越大,误差越大,算法将不准确。

取初始迭代值为a = (0,0,0,0),微分步长同上,探讨迭代收敛精度对算法的影响,计算结果见表 4,其中,w 为微分步长,n 为迭代次数。

由表 4 可以看出,收敛精度对算法的影响很大,随着收敛精度的减小,误差也在减小。但是,随着收敛精度的减小,反演效率降低。

算例 2:

此算例,是在算例 1 基础上,加上扰动数据来反演边界流量,其真解和附加数据同上。且扰动数据为

$$g^{\varepsilon}(y) = g(y)(1 + \zeta \varepsilon)$$
, (7.3)

其中 $\varepsilon > 0$ 是扰动水平, ζ 为取值于[-1,1]的随机数。

取初始迭代值为 a = (0.2, 0.2, 0.3, 0.2), D = 1 为扩散系数, v = 1 为对流速度,取微分步长 $\omega = 0.01$, 迭代收敛精度 eps = le - 4 取扩散系数 D = 1,微分步长 $\omega = 0.01$,表 5 列出附加数据分别在不同扰动水平下反演的结果,其中 a^{inv} 表示反演解,Err 表示真解与反演解的相对误差,定义为

$$Err = \frac{\left\| f_{avr}^{inv}(x,y) - f(x,y) \right\|_{2}}{\left\| f(x,y) \right\|_{2}},$$
(7.4)

其中 f_{avr}^{inv} 表示反演解, n 表示迭代次数。

由表 5 可以看出,随着数据扰动水平的减小,反演解与精确解误差逐渐变小,注意到取 ε = 1% 时,反演误差 Err = 4.14577e – 2 ,反演解很好地逼近真解,且反演算法是数值稳定的。

其次,考察初始迭代对反演算法的影响,反演计算结果见表 6,其中 a^0 表示初始迭代, a^{inv} 表示反演解, Err 表示当扰动数据为 $\varepsilon=1\%$ 时反演解与真解的误差。

Table 5. Influence of disturbance data on inversion results 表 5. 扰动数据对反演算法的影响

arepsilon	a^{inv}	Err	n
1%	(1.00703, 0.958981, 2.07221, 0.961636)	4.14577e-2	41
0.5%	(1.00369, 0.981586, 2.02758, 0.987034)	1.34763e-2	41
0.1%	(1.00182, 0.99005, 2.0165, 0.991563)	7.95985e-3	42
0.01%	(0.999565, 1.00227, 1.99642, 1.00176)	1.74265e-3	42

Table 6. Influence of initial iteration on inversion results 表 6. 初始迭代对反演结果的影响

a^0	a^{inv}	E_{rr}
(0, 0, 0, 0)	(1.00782, 0.959981, 2.06178, 0.970171)	2.98891e-2
(0.5, 0.5, 1.0, 0.5)	(1.00174, 0.991306, 2.013, 0.993878)	2.58630e-2
(1.0, 1.0, 1.0, 1.0)	(1.00495, 0.97441, 2.03998, 0.980507)	1.93705e-2
(1.2, 1.2, 1.2, 1.2)	(1.0043,0.977546,2.03523,0.982764)	1.70715e-2
(1.3, 1.4, 1.5, 1.6)	(1.01039, 0.947987, 2.07869, 0.962651)	1.80944e-2
(2.0, 2.0, 2.0, 2.0)	(1.0072, 0.962777, 2.0581, 0.971677)	2.80794e-2

由表 6 可知,初始迭代的选取,会从一定程度上影响反演结果。初始迭代值靠近真值时,反演解与 真解的误差小,远离真值时,误差变大。

8. 结论

本文主要介绍了矩形域上二维对流扩散方程边界流量反问题。假设边界流量未知,根据实测数据,构造确定边界流量反问题。与之前的文章相似,构造伴随方程,得出描述附加数据和未知边界流量的变分恒等式,进而证明此反问题解的存在性/唯一性,并对其解的稳定性进行相应的分析和证明。本文的六、七两个章节介绍了利用 ADI 方法对正问题进行数值求解,同样利用同伦正则化方法对边界流量进行反演,并给出相应的数值算例,说明算法是可行的。

参考文献

- [1] Yamamoto, M. (1993) Conditional Stability in Determination of Force Terms of Heat Equations in a Rectangle. *Mathematical and Computer Modelling*, **18**, 79-88.
- Isakov, V. (1999) Some Inverse Problems for the Diffusion Equation. *Inverse Problems*, 15, 3-10. https://doi.org/10.1088/0266-5611/15/1/004
- [3] Isakov, V. (1991) Inverse Parabolic Problems with the Final Overdetermination. *Communications on Pure and Applied Mathematics*, **54**, 185-209.
- [4] Bushuyev, I. (1995) Global Uniqueness for Inverse Parabolic Problems with Final Observation. *Inverse Problems*, 11, L11-L16. https://doi.org/10.1088/0266-5611/11/4/001
- [5] Li, G.S. and Yamamoto, M. (2006) Stability Analysis for Determining a Source Term in a 1-D Advection-Dispersion Equation. *Journal of Inverse and Ill-Posed Problems*, **14**, 147-155. https://doi.org/10.1515/156939406777571067
- [6] 李功胜, 贾现正, 孙春龙, 杜殿虎. 对流弥散方程线性源项系数反演的变分伴随方法[J]. 应用数学学报, 2015, 38(6): 1001-1015.
- [7] Isakov, V. (1998) Inverse Problems for Partial Differential Equations. Spring-Verlag, New York. https://doi.org/10.1007/978-1-4899-0030-2
- [8] Du Chateau, P. and Rundell, W. (1985) Unicity in an Inverse Problem for an Unknown Term in a Reaction Diffusion Equation. *J. Differential Equations*, **59**, 155-164. https://doi.org/10.1016/0022-0396(85)90152-4
- [9] Du Chateau, P. (1995) Monotomicity and Invertibility of Coefficient to Data Mapping for Parabolic Inverse Problems. SIAM Journal on Mathematical Analysis, 26, 1473-1487. https://doi.org/10.1137/S0036141093259257
- [10] Du Chateau, P. (1997) An Inverse Problem for the Hydraulic Properties of Porous Media. SIAM Journal on Mathematical Analysis, 28, 611-632. https://doi.org/10.1137/S0036141095285673
- [11] Du Chateau, P., Thelwell, R. and Butters, M. (2004) Analysis of an Adjoint Problem Approach to the Identification of an Unknown Diffusion Coefficient. *Inverse problems*, **20**, 601-625. https://doi.org/10.1088/0266-5611/20/2/019
- [12] Hasanov, A., Du Chateau, P. and Petkas, B. (2006) An Adjoint Problem Approach and Coarsefine Mesh Method for Identification of the Diffusion in a Linear Parabolic Equation. *Journal of Inverse and Ill-Posed Problems*, 14, 435-463. https://doi.org/10.1515/156939406778247615
- [13] Du Chateau, P. (2013) An Adjoint Method for Proving Identifiability of Coefficients in Parabolic Equations. *Journal of Inverse and Ill-Posed Problems*, **21**, 639-663.
- [14] 刘倩, 李功胜, 王桢东. 一个二维对流扩散方程源项反问题的条件唯一性[J]. 应用数学进展, 2016, 5(4): 591-597.
- [15] Choulli, M. and Yamamoto, M. (2004) Conditional Stability in Determining a Heat Source. *Journal of Inverse and Ill-Posed Problems*, 12, 233-244. https://doi.org/10.1515/1569394042215856
- [16] McCamy, R.C., Mizel, V.J. and Seidman, T.I. (1968) Approximate Boundary Controllability of the Heat Equation. Journal of Mathematical Analysis and Applications, 23, 699-703. https://doi.org/10.1016/0022-247X(68)90148-0
- [17] 李功胜, 姚德. 扩散模型的源项反演及其应用[M]. 北京: 科学出版社, 2014.
- [18] 娄和忠. 溶质运移模型与多参数反演算法[D]: [硕士学位论文]. 淄博: 山东理工大学, 2012.
- [19] 孙春龙、含多个时间分数阶反常扩散方程的反问题研究[D]: [硕士学位论文]. 淄博: 山东理工大学、2016.
- [20] Li, G.S., Cheng, J., Yao, D., Liu, H.L. and Liu, J.J. (2007) One-Dimensional Equilibrium Model and Source Parameter

Determination for Soil-Column Experiment. *Applied Mathematics and Computation*, **190**, 1365-1374. https://doi.org/10.1016/j.amc.2007.02.064

[21] Li, G.S., Tan, Y.J., Yao, D., Wang, X.Q. and Liu, H.L. (2008) A Nonlinear Mathematical Model for an Undisturbed Soil-Column Experiment and Source Parameter Identification. *Inverse Problems in Science and Engineering*, 16, 885-901. https://doi.org/10.1080/17415970802015880

知网检索的两种方式:

1. 打开知网页面 http://kns.cnki.net/kns/brief/result.aspx?dbPrefix=WWJD 下拉列表框选择: [ISSN], 输入期刊 ISSN: 2324-7991,即可查询

2. 打开知网首页 http://cnki.net/ 左侧"国际文献总库"进入,输入文章标题,即可查询

投稿请点击: http://www.hanspub.org/Submission.aspx

期刊邮箱: <u>aam@hanspub.org</u>