Rank Game

Zhi Lin

Schools of Science, Chongqing Jiaotong University, Chongqing Email: linzhi7525@163.com

Received: Jul. 6th, 2012; revised: Jul. 15th, 2012; accepted: Aug. 12th, 2012

Abstract: In this paper, we introduce the concept of the rank game by an agon and propose its mathematical model, and prove two theorems for two-person rank game. Moreover, by some examples, we also show the difference of Nash equilibrium point and rank equilibrium point.

Keywords: Rank Game; Rank Equilibrium; Rank; Nash Equilibrium

名次博弈

林志

重庆交通大学理学院,重庆 Email: linzhi7525@163.com

收稿日期: 2012年7月6日; 修回日期: 2012年7月15日; 录用日期: 2012年8月12日

摘 要:通过一场有奖竞赛活动,本文介绍了名次博弈的基本概念及数学模型,给出了 2 人 - 名次博弈的两个基本结论:文中通过一些例子,指出了名次均衡与 Nash 均衡的差异。

关键词: 名次博弈; 名次均衡; 名次数; Nash 均衡

1. 一场有奖竞赛活动

某电视台举办了一场大型有奖竞赛活动,活动涉及知识问答、智力游戏等诸多内容,共有 18 名选手参加,该活动由预赛和决赛两阶段构成,在预赛阶段有三轮比赛,第一轮比赛 18 名选手同场竞技,根据各自的表现每人获得某一分数,然后进入第二轮比赛,在这一轮比赛中,18 名选手随机分组,3 人一组,总共分成 6 组,各组在不同地点同时进行比赛,比赛结果每人又获得某一分数值,两轮所得分数之和,即为选手预赛第二轮的累积积分,根据比赛规则,在预赛的第二轮比赛结束后,各组累积积分第一的选手将直接进入决赛,这样有 6 名选手将直接进入决赛,其他 12 名选手将参加预赛的第三轮比赛,其中,各组累积积分第二的选手(共 6 名)将组成 A 组进行比赛,各组累积积分第三的选手(共 6 名)将组成 B 组进行比赛,比赛结束后,各组依据选手预赛第三轮累积积分(第二轮累积积分与第三轮比赛得分之和)从高到低分别进行排序,A 组排前三名的选手获得进入决赛的资格,B 组排第一名的选手获得进入决赛的资格。各选手在每一轮比赛结束后,都知道自己及其他选手的累积积分(以及已经结束的每一轮比赛得分)。主办方赛前公告,凡进入决赛的选手,将获得 1 万至 500 万不等的奖励。另外,预赛的每一轮比赛前,主持人当着各选手的面,抽签决定比赛题目;比赛规则规定任何两个选手都不能结盟以针对第三人,假定所有选手都遵守这一规定;比赛规则还规定,在决赛阶段,若两选手的累积积分相同,则将按他们预赛阶段累积积分的高低来排名次;以上信息是公开的,假定每一个选手都知道这些信息。目前,假设比赛进入预赛的第二轮,某组中 A、B、C 三位选手玩如下的智力游戏:选手 A 有 α_1 、 α_2 两个策略可供选择,选手 B 有 β_1 、 β_2 两个策略可供选择,选手 C 有 γ_1 、 γ_2 两个策略可供选择,支付表见表 1~2,表格

中的第一个数字表示选手 A 的得分,第二个数字表示选手 B 的得分,第三个数字表示选手 C 的得分。 现在,面临如下问题:

- 1) 如果预赛的第一轮比赛,选手 A 获得 10 分,选手 B 获得 30 分,选手 C 获得 0 分,那么在这一场比赛中,三位选手会如何选择?最终的结果如何?
- 2) 如果预赛的第一轮比赛三位选手有相同得分,那么在这一场比赛中,三位选手又会如何选择?最终的结果又如何?

Table 1. Player C chooses strategy γ_1 表 1. 若选手 C 选择策略 γ_1

		选手 B		
		$oldsymbol{eta_{ m l}}$	eta_2	
选手 A	$lpha_1$	$(60, 110, 90)^{R}$	(50, 40, 61)	
	$lpha_2$	(30, 35, 37)	(40, 15, 60)	

Table 2. Player C chooses strategy γ₂ 表 2. 若选手 C 选择策略 γ₂

		选手	≅ B
		$eta_{ m l}$	eta_2
选手 A	$lpha_1$	(120, 110, 92)	(90, 70, 88)
	$lpha_2$	(130, 150, 100)	(250, 290, 330)

很明显,这是一个 3 人 - 非合作博弈问题,但与传统的非合作博弈问题比较,该博弈问题又有其独特之处。在文献[1,2]中,Nash 用不动点定理证明了 n 人非合作博弈均衡局势的存在性,由此奠定了非合作博弈的理论基础。在非合作博弈中,各局中人被假定总是极大化自己的支付(收益)值(在混合策略情形为支付期望值),而不关心其他局中人的支付(收益)值是多少,换句话说,各局中人被假定只关心自己支付值的绝对数,而不关心自己支付值的相对数,而在实践中,这一假定经常并不成立,例如,对上面的有奖竞赛活动第二轮预赛中的选手A、B 和 C 来说,他们尽管也关心自己得分的绝对数,但显然他们更关心自己得分的相对数(严格地说,他们更关心自己累积积分的相对数),因为他们三人中的累积积分第一者,将直接进入决赛,而累积积分第二者进入决赛的概率是累积积分最低者的三倍。上面的例子看起来像虚构的,但类似的情形在现实中十分常见,比如"在若干个职工中评选几个优秀职工给予奖励","在若干个投标者中选择几个中标者",等等,都属于这类问题;近年来,在国际关系中,大国间的博弈也开始出现类似的苗头,老大希望自己永远是老大,老二、老三等自然不甘落后,希望后来居上,这本身十分正常,但重视排名的博弈思想,与己有的重视支付(收益)绝对数的博弈思想是完全不同的,在重视排名思想指导下的局中人,行为经常也显得与众不同,有时甚至显得很怪异、不可捉摸,事实上,只要了解了其博弈思路,其行为不单不怪异,而且十分正常,事先预测也完全可能。

2. 名次博弈

1) 名次博弈的基本要素

局中人、策略集、支付函数是经典的非合作博弈的三大基本要素,也是名次博弈的基本要素,但名次博弈中,局中人的选择,不单与博弈中的(相对)支付(收益)值有关,还与博弈前局中人的支付(收益)的初始值有关,强者(支付的初始值大者)与弱者(支付的初始值小者)在同一博弈中显然有不同的选择,换句话说,名次博弈是根据局中人博弈后的累积支付值(博弈前的初始支付值与博弈后获得的支付值之和)来排名的,因此,名次博弈还有第四大基本要素:局中人的初始支付(收益)值。

2) 名次博弈的几个基本概念

用 $I = \{1, 2, \dots, n\}$ 表示局中人集合。对任何 $i \in I$,用 K_i 表示局中人 i 的策略集,用实值函数 $f_i : K \mapsto R$ 表示局中人 i 的支付(收益)函数,用 f_i^0 表示局中人 i 的初始支付值。记

 $K = \prod_{i=1}^{n} K_{i}, K_{i} = \prod_{j \neq i, j=1}^{n} K_{j}, f^{0} = (f_{1}^{0}, f_{2}^{0}, \dots, f_{n}^{0}), f(x) = (f_{1}(x), f_{2}(x), \dots, f_{n}(x)), \forall x \in K$ 。对任何 $x \in K$,可记为 $x = (x_{i}, x_{i})$ 。对任何 $i \in I, x \in K$,记 $Q_{i} = \{j \in I : f_{j}^{0} + f_{j}(x) > f_{i}^{0} + f_{i}(x)\}, P_{i} = \{j \in I : f_{j}^{0} + f_{j}(x) = f_{i}^{0} + f_{i}(x)\}, m_{i} = |Q_{i}| + 1, l_{i} = |P_{i}|$,其中 $|\bullet|$ 表示集合中的元素个数,记

$$h_i = \frac{l_i - 1}{l_i}, \ u_i = m_i + h_i.$$

显然, m_i 和 l_i 都是正整数,并且 $n \ge m_i$, l_i , $u_i \ge 1 > h_i \ge 0$ 。注意,对任何 $i \in I$, $x \in K$, $u_i(x) = u_i(f^0, f(x))$ 。

定义 2.1. 对任何 $i \in I$, $x \in K$, m_i 被称为局中人 i 在点 $x \in K$ 处的名次整数, h_i 被称为局中人 i 在点 $x \in K$ 处的名次条数, u_i 被称为局中人 i 在点 $x \in K$ 处的名次数。对任何 $x \in K$, $u(x) = (u_1(x), u_2(x), \cdots, u_n(x))$ (简记, $u = (u_1, u_2, \cdots u_n)$)被称为在点 $x \in K$ 处的名次列, $f(x) = (f_1(x), f_2(x), \cdots, f_n(x))$ (简记, $f = (f_1, f_2, \cdots, f_n)$)被称为在点 $x \in K$ 处的支付列, $F(x) = (F_1(x), F_2(x), \cdots, F_n(x)) = f^0 + f(x) = (f_1^0 + f_1(x), f_2^0 + f_2(x), \cdots, f_n^0 + f_n(x))$ (简记, $F = (F_1, F_2, \cdots, F_n)$)被称为在点 $x \in K$ 处的累积支付列。如果对任何 $f(n \ge j \ge 1)$,存在 $f \in I$,使 $f \in I$,有在 $f \in I$,使 $f \in I$,他 $f \in$

容易验证: 对任何 $i, j \in I, x \in K, u_i = (<,>)u_i$ 当且仅当 $F_i(x) = (>,<)F_i(x)$ 。

3) 名次博弈的基本规则

名次博弈的博弈规则是:局中人总是力图使排名在自己之前(博弈后累积支付值比自己的大)的局中人数最少,在满足这一条件的基础上,局中人总是力图使与自己排名相同(博弈后累积支付值与自己的相等)的局中人数最少,在满足上述两个条件的基础上,局中人总是力图使自己博弈中获得的支付值最大;等价地,名次规则还可表述为:局中人总是力图使排名在自己之前的局中人数最少,在满足这一条件的基础上,局中人总是力图使排名在自己之后(博弈后累积支付值比自己的小)的局中人数最多,在满足上述两个条件的基础上,局中人总是力图使自己博弈中获得的支付值最大。

名次博弈属于非合作博弈范畴,Nash 博弈关于局中人是理性的、信息是对称的等假设条件,也都是名次博弈的假设条件。名次博弈与 Nash 博弈的主要区别是:在 Nash 博弈中,各局中人被假定总是极大化自己的支付值,而不关心其他局中人的支付值,而在名次博弈中,各局中人被假定总是极小化自己的名次数,在名次数达到最小的前提下,再极大化自己的支付值。

Nash 博弈适合于局中人无竞争关系情形,而名次博弈适合于局中人间存在竞争关系情形。

4) 名次博弈的数学模型

用 $I = \{1, 2, \dots, n\}$ 表示局中人集合。对任何 $i \in I$,用 K_i , f_i^0 , f_i 分别表示局中人 i 的策略集、初始支付值和支付函数。

名次博弈是: 寻找 $x^* = (x_1^*, x_2^*, \dots, x_n^*) \in K$ 满足: 对任何 $i \in I$, $y_i \in K_i$,

$$u_{i}\left(f^{0}+f\left(x_{i}^{*},x_{i}^{*}\right)\right)=\min_{y_{i}\in K_{i}}u_{i}\left(f^{0}+f\left(y_{i},x_{i}^{*}\right)\right),$$

并且, 如果
$$u_i(f^0 + f(x_i^*, x_i^*)) = u_i(f^0 + f(y_i, x_i^*))$$
, 则有

$$f_i\left(x_i^*, x_{\hat{i}}^*\right) \ge f_i\left(y_i, x_{\hat{i}}^*\right).$$

 x^* 被称为名次博弈的一个名次均衡点;名次博弈通常被表示为 $\Gamma = \left\{ K_i, f_i^0, f_i \right\}_{i \in I}$ 。对任何 $i \in I$,如果 K_i 是一个有限集,那么 $f_i(F_i)$ 可以用矩阵或表格来表示,这被称为支付(累积支付)矩阵或支付(累积支付)表,在这种情况下,名次博弈被称为有限名次博弈,否则称为无限名次博弈。若名次博弈的支付函数满足条件: $\forall x \in K$,

 $\sum_{i \in I} f_i(x) = 0$, 则称为零和名次博弈。

对名次博弈问题 $\Gamma = \left\{ K_i, f_i^0, f_i \right\}_{i \in I}$,如果进行 Nash 博弈(此时初始支付值不起作用),则可表示为 $\tilde{\Gamma} = \left\{ K_i, f_i \right\}_{i \in I}$,称 $\tilde{\Gamma}$ 为名次博弈 Γ 对应的 Nash 博弈问题。显然,一个名次博弈问题对应惟一一个 Nash 博弈问题,而一个 Nash 博弈问题,因初始支付值的不同,不能对应惟一的名次博弈问题。

由名次博弈模型易知,如果名次博弈 $\Gamma^1 = \left\{K_i, f_i^0, f_i\right\}_{i \in I}$ 的所有局中人的初始支付减去同一个数 a 后,得到名次博弈 $\Gamma^2 = \left\{K_i, f_i^0 - a, f_i\right\}_{i \in I}$,那么,名次博弈 Γ^1 和 Γ^2 有相同的名次均衡集,并且对任何一个名次均衡(如果存在),其在 Γ^1 和 Γ^2 中有相同的中的名次列和支付列,累积支付列有如下关系: $\forall i \in I, F_i^1 = F_i^2 + a$ 。

需要说明的是,在有限策略集情形,尽管名次博弈也可以用定义混合策略的方式,将策略集扩充为混合策略集,然后按照期望支付值来计算名次数,进行名次博弈,但这不是本文讨论的内容,为叙述方便,本文所提及的所有策略均为纯策略,所有 Nash 均衡及名次均衡均为纯策略均衡,不含混合策略均衡。

5) 名次博弈的几个结果

定理 2.1. 对 2 人 ¬ (有限或无限)名次博弈 Γ ,如果存在两个名次均衡 $x^{1*} = \left(x_1^{1*}, x_2^{1*}\right), x^{2*} = \left(x_1^{2*}, x_2^{2*}\right) \in K$,那么

$$u^{1*} = u^{2*}$$
.

其中
$$u^{1*} = (u_1(f^0 + f(x^{1*})), u_2(f^0 + f(x^{1*}))), u^{2*} = (u_1(f^0 + f(x^{2*})), u_2(f^0 + f(x^{2*})))$$
。

证明: 对 2 人 - 名次博弈Γ, 只有如下三种情况:

1)
$$u^{1*} = (1,2)$$
。因 x^{1*} 是一个名次均衡,那么, $u_2(f^0 + f(x_1^{1*}, x_2^{2*})) \ge u_2(f^0 + f(x_1^{1*}, x_2^{1*})) = 2$,于是有

$$u_2(f^0 + f(x_1^{1*}, x_2^{2*})) = 2, u_1(f^0 + f(x_1^{1*}, x_2^{2*})) = 1.$$

因 x^{2*} 也是一个名次均衡,那么,

$$u_1(f^0 + f(x_1^{2*}, x_2^{2*})) \le u_1(f^0 + f(x_1^{1*}, x_2^{2*})) = 1$$
,

于是有
$$u_1(f^0 + f(x_1^{2^*}, x_2^{2^*})) = 1, u_2(f^0 + f(x_1^{2^*}, x_2^{2^*})) = 2$$
,即:

$$u^{2^*} = u^{1^*} = (1, 2)$$
.

2) $u^{1*} = (1,2)$ 。用类似的方法,可以得到: $u^{2*} = u^{1*} = (2,1)$ 。

3)
$$u^{1*} = \left(1\frac{1}{2}, 1\frac{1}{2}\right)$$
。因 x^{1*} 是一个名次均衡,那么 $u_2\left(f^0 + f\left(x_1^{1*}, x_2^{1*}\right)\right) \le u_2\left(f^0 + f\left(x_1^{1*}, x_2^{2*}\right)\right)$,即有:

$$u_2(f^0 + f(x_1^{1*}, x_2^{2*})) = 1\frac{1}{2} \implies 2$$

如果 $u_2(f^0 + f(x_1^{1*}, x_2^{2*})) = 2$,则有 $u_1(f^0 + f(x_1^{1*}, x_2^{2*})) = 1$ 。因 x^{2*} 是名次均衡,那么, $u_1(f^0 + f(x_1^{2*}, x_2^{2*})) \le u_1(f^0 + f(x_1^{1*}, x_2^{2*})) = 1$,得到 $u_1(f^0 + f(x_1^{2*}, x_2^{2*})) = 1$,即 $u^{2*} = (1, 2)$ 。再次因 x^{2*} 是名次均衡,得 $u_2(f^0 + f(x_1^{2*}, x_2^{1*})) \ge u_2(f^0 + f(x_1^{2*}, x_2^{2*})) = 2$, 于是 $u_2(f^0 + f(x_1^{2*}, x_2^{1*})) = 2$, $u_1(f^0 + f(x_1^{2*}, x_2^{1*})) = 1$,即 $u(f^0 + f(x_1^{2*}, x_2^{1*})) = (1, 2)$,这与 x^{1*} 是名次均衡矛盾,即:

$$u^{2^*} = u^{1^*} = \left(1\frac{1}{2}, 1\frac{1}{2}\right)$$

证毕。

下面的例子说明,如果 $n \ge 3$,定理 2.1 未必成立。在本文中,只要不引起混淆,Nash 均衡都用上标 "N" 标出,名次均衡都用上标 "R" 标出。

例 2.1. 考虑如下 3 人 - 有限名次博弈,其中 $f_1^0 = f_2^0 = f_3^0 = 0$,支付表为(表 3 和 4):

Table 3. Player 3 chooses strategy γ_1 表 3. 若局中人 3 选择策略 γ_1

		局中人 2		
	_	$eta_{ m l}$	eta_2	β_3
	$\alpha_{ m l}$	$(5,4,3)^R$	(3, 2, 2)	(4, 2, 8)
局中人 1	$lpha_2$	(4, 4, 8)	(1, 1, 1)	(2, 1, 8)
	α_3	(3, 2, 8)	(4, 3, 8)	(6, 5, 7)

Table 4. Player 3 chooses strategy γ₂ 表 4. 若局中人 3 选择策略 γ₂

		局中人 2		
		$oldsymbol{eta}_1$	eta_2	β_3
	$\alpha_{ m l}$	(4, 3, 2)	(3, 2, 1)	(1, 2, 4)
局中人 1	α_2	(3, 3, 2)	(2, 3, 4)	(2, 3, 4)
	α_3	(4, 4, 5)	(3, 4, 6)	$(4, 5, 9)^R$

累积支付表与支付表相同。容易验证: $x^{1*} = (\alpha_1, \beta_1, \gamma_1)$ 和 $x^{2*} = (\alpha_3, \beta_3, \gamma_2)$ 都是名次均衡,但 $u^{1*} = (1, 2, 3)$, $u^{2*} = (3, 2, 1)$ 。

定理 2.2. 对 2 人 \neg (有限或无限)零和名次博弈 $\Gamma = \{K_1, K_2, f_1^0, f_2^0, f_1, f_2\}(f_1 + f_2 = 0)$,设名次均衡点集为 S,其对应 2 人 \neg Nash 零和博弈 $\tilde{\Gamma} = \{K_1, K_2, f_1, f_2\}(f_1 + f_2 = 0)$,设其 Nash 均衡点集为 \tilde{S} ,则有

$$S = \tilde{S}$$

证明: 不失一般性,假定 $f_1^{\ 0}=0, \, f_2^{\ 0}=a \, ($ 相当于 $a=f_2^{\ 0}-f_1^{\ 0})$ 。用 F_1,F_2 分别表示局中人 1 和 2 的累积支付函数。若 $S=\varnothing$,则 $S\subset \tilde{S}$ 成立,假定 $S\neq\varnothing$ 。 $\forall x^R=\left(x_1^R,x_2^R\right)\in S$,

1)
$$u(x_1^R, x_2^R) = (1, 2)$$
。此时

$$F_1(x_1^R, x_2^R) = f_1^0 + f_1(x_1^R, x_2^R) = f_1(x_1^R, x_2^R) > F_2(x_1^R, x_2^R) = f_2^0 + f_2(x_1^R, x_2^R) = a - f_1(x_1^R, x_2^R).$$

如果存在 $y_1 \in K_1$, 使 $f_1(y_1, x_2^R) > f_1(x_1^R, x_2^R)$, 那么有:

$$F_2(y_1, x_2^R) = a + f_2(y_1, x_2^R) = a - f_1(y_1^R, x_2^R) < a - f_1(x_1^R, x_2^R) < f_1(x_1^R, x_2^R) < f_1(y_1, x_2^R) = F_1(y_1, x_2^R),$$

即 $u(y_1, x_2^R) = (1, 2)$, 这与 x^R 是名次均衡矛盾。如果存在 $z_2 \in K_2$, 使 $f_2(x_1^R, z_2) > f_2(x_1^R, x_2^R)$, 则有 $F_2(x_1^R, z_2) > F_2(x_1^R, x_2^R)$,

那么,无论 $u(x_1^R, z_2) = (1, 2), (2, 1), (1\frac{1}{2}, 1\frac{1}{2})$,都与 x^R 是名次均衡矛盾。

这说明,无论 a 取何值, x_1^R 都使 $f_1\left(y_1,x_2^R\right)$ 达到最大值, x_2^R 都使 $f_2\left(x_1^R,y_2\right)=-f_1\left(x_1^R,y_2\right)$ 达到最大值,即: $x^R\in \tilde{S}$ 。

2)
$$u(x_1^R, x_2^R) = (1\frac{1}{2}, 1\frac{1}{2})$$
。此时 $F_1(x_1^R, x_2^R) = F_2(x_1^R, x_2^R)$,于是有 $f_1(x_1^R, x_2^R) = a + f_2(x_1^R, x_2^R) = a - f_1(x_1^R, x_2^R)$,

得到
$$f_1\left(x_1^R,x_2^R\right) = \frac{a}{2}$$
。 如果存在 $y_1 \in K_1$, 使 $f_1\left(y_1,x_2^R\right) > f_1\left(x_1^R,x_2^R\right) = \frac{a}{2}$, 那么有 $F_1\left(y_1,x_2^R\right) = f_1\left(y_1,x_2^R\right) > \frac{a}{2}$,

$$F_2\left(y_1,x_2^R\right) = a + f_2\left(y_1,x_2^R\right) = a - f_1\left(y_1,x_2^R\right) < a - f_1\left(x_1^R,x_2^R\right) = \frac{a}{2} \;, \quad \text{(AP)} \; F_1\left(y_1,x_2^R\right) > F_2\left(y_1,x_2^R\right) \;, \quad \text{(II)} \; u\left(y_1,x_2^R\right) = \left(1,2\right) \;, \quad \text{(II)} \;$$

这与 x^R 是名次均衡矛盾。如果存在 $Z_2 \in K_2$,使 $f_2\left(x_1^R, z_2\right) < f_2\left(x_1^R, x_2^R\right) = -f_2\left(x_1^R, x_2^R\right) = -\frac{a}{2}$,那么有 $F_1\left(x_1^R, z_2\right) = f_2\left(x_1^R, z_2\right) = -f_2\left(x_1^R, z_2\right) < \frac{a}{2}$, $F_2\left(x_1^R, z_2\right) = a + f_2\left(x_1^R, z_2\right) > a - \frac{a}{2} = \frac{a}{2}$,得到 $F_1\left(x_1^R, z_2\right) < F_2\left(x_1^R, z_2\right)$,即 $u\left(x_1^R, z_2\right) = (2,1)$,这与 x^R 是名次均衡矛盾。

这说明,无论 a 取何值, x_1^R 都使 $f_1\left(y_1,x_2^R\right)$ 达到最大值, x_2^R 都使 $f_2\left(x_1^R,z_2\right)$ 达到最大值,即: $x^R\in \tilde{S}$ 。 对 $u\left(x_1^R,x_2^R\right)=(2,1)$ 情形,同理可证上述结论。因此, $S\subset \tilde{S}$ 。

若 $\tilde{S} = \emptyset$,则 $\tilde{S} \subset S$ 成立,假定 $\tilde{S} \neq \emptyset$ 。 $\forall x^N = \left(x_1^N, x_2^N\right) \in \tilde{S}$,由 Nash 均衡的定义知, x_1^N 使 $f_1\left(y_1, x_2^N\right)$ 最大, x_2^N 使 $f_2\left(x_1^N, z_2\right) = -f_1\left(x_1^N, z_2\right)$ 最大。只需证明 x^N 使局中人 1 和 2 的名次数都最小即可。

1) $u(x_1^N, x_2^N) = (1, 2)$ 。此时 x^N 已使局中人 1 的名次数最小,现需证明 x^N 使局中人 2 的名次数最小即可。如果存在 $z_2 \in K_2$ 使 $F_1(x_1^N, z_2) \le F_2(x_1^N, z_2)$,即: $f_1(x_1^N, z_2) \le a - f_1(x_1^N, z_2)$,于是有 $f_1(x_1^N, z_2) \le \frac{a}{2}$,得到

$$f_2(x_1^N, z_2) = -f_1(x_1^N, z_2) \ge -\frac{a}{2}$$
.

由 $u(x_1^N, x_2^N) = (1,2)$,得到

$$F_1\left(x_1^N, x_2^N\right) = f_1^0 + f_1\left(x_1^N, x_2^N\right) = f_1\left(x_1^N, x_2^N\right) > F_2\left(x_1^N, x_2^N\right) = f_2^0 + f_2\left(x_1^N, x_2^N\right) = a - f_1\left(x_1^N, x_2^N\right),$$

即有: $f_1(x_1^N, x_2^N) > \frac{a}{2}$,得到 $f_2(x_1^N, x_2^N) = -f_1(x_1^N, x_2^N) < -\frac{a}{2} \le f_2(x_1^N, z_2)$,与 x^N 是 Nash 均衡点矛盾,这说明 x^N 已使局中人 2 的名次数最小。因此, $x^N \in S$ 。

2)
$$u(x_1^N, x_2^N) = (1\frac{1}{2}, 2\frac{1}{2})$$
。此时 $F_1(x_1^N, x_2^N) = F_2(x_1^N, x_2^N)$,得到 $f_1(x_1^N, x_2^N) = a - f_1(x_1^N, x_2^N)$,即 $f_1(x_1^N, x_2^N) = \frac{a}{2}$ 。

如果存在 $y_1 \in K_1$,使 $F_1(y_1, x_2^N) > F_2(y_1, x_2^N)$,那么有: $f_1(y_1, x_2^N) > a - f_1(y_1, x_2^N)$,即 $f_1(y_1, x_2^N) > \frac{a}{2} = f_1(x_1^N, x_2^N)$,这与 x^N 是 Nash 均衡点矛盾,这说明 x^N 使局中人 1 的名次数最小。如果存在 $z_2 \in K_2$,使 $F_2(x_1^N, z_2) > F_1(x_1^N, z_2)$,

那么有
$$a-f_1(x_1^N,z_2)>f_1(x_1^N,z_2)$$
,即 $f_1(x_1^N,z_2)<\frac{a}{2}$,于是

$$f_2\left(x_1^N,z_2\right) = -f_1\left(x_1^N,z_2\right) > -\frac{a}{2} = -f_1\left(x_1^N,x_2^N\right) = f_2\left(x_1^N,x_2^N\right),$$

这又与 x^N 是 Nash 均衡点矛盾,这说明 x^N 使局中人 2 的名次数最小。因此, $x^N \in S$ 。对 $u\left(x_1^N, x_2^N\right) = (2,1)$ 情形,同理可证上述结论。因此, $S \subset \tilde{S}$ 。所以 $S = \tilde{S}$ 。证毕。由于 Nash 均衡与初始支付值无关,因此,对 2 人 - (有限或无限)零和名次博弈而言,其名次均衡与其初始支付值无关。下面的例子说明,如果 $n \geq 3$,定理 2.2 未必成立。

例 2.2. 考虑如下 3 人 - 有限零和名次博弈, 支付表为(表 5 和 6):

Table 5. Player 3 chooses strategy γ_1 表 5. 若局中人 3 选择策略 γ_1

		局中人 2	
		$eta_{ m l}$	eta_2
局中人 1	α_1	(1, 2, -3)	(-4, 3, 1)
	$lpha_2$	(3, -5, 2)	(4, -1, -3)

林志 | 名次博弈

Table 6. Player 3 chooses strategy γ_2 表 6. 若局中人 3 选择策略 γ_2

		局中人 2	
		$eta_{ m l}$	eta_2
	α_1	(5, 4, -9)	$(-5, 3, 2)^R$
局中人 1	α_2	(-5, 3, 2)	(-6, 8, -2)

当 $f_1^0 = f_2^0 = f_3^0 = 0$ 时,累积支付表与支付表相同,容易验证: $x^R = (\alpha_1, \beta_2, \gamma_2)$ 是惟一的名次均衡。当 $f_1^0 = f_2^0 = 0, f_3^0 = -5$ 时,累积支付表为(表 7 和 8):

Table 7. Player 3 chooses strategy γ_1 表 7. 若局中人 3 选择策略 γ_1

		局中人 2	
		$eta_{ m l}$	eta_2
局中人 1	α_1	(1, 2, -8)	(-4, 3, -4)
	$lpha_2$	(3, -5, -3)	(4, -1, -8)

Table 8. Player 3 chooses strategy γ₂ 表 8. 若局中人 3 选择策略 γ₂

		局中人 2	
		$eta_{ m l}$	eta_2
局中人 1	$lpha_1$	(5, 4, -14)	(-5, 3, -3)
	$lpha_2$	(-5, 3, -3)	$(-6, 8, -7)^R$

容易验证: $x^R = (\alpha_2, \beta_2, \gamma_2)$ 是惟一的名次均衡; 这说明对零和名次博弈, 其名次均衡同样与支付初始值有关。 在本例中, 容易验证, Nash 均衡点不存在。

3. 名次均衡的几个例子

1) 三个经典例子。

下面是著名的囚徒困境问题,见文献[3]。

例 3.1. 警方拘捕了两个犯罪嫌疑人,但没有掌握足够的证据指证其罪行,如果两个犯罪嫌疑人中至少有一个供认犯罪,就能确定罪行成立。警方将两个嫌疑人隔离开来,并分别给他们如下选择:供认或不供认,如果两人都供认,则两人都将被判刑 3 个月;如果两人都不供认,由于缺乏足够的证据,两人将从轻发落,各被判刑 1 个月;如果一个供认而另一个不供认,则供认者释放,不供认者将被判刑 12 个月。此时。两个嫌疑人将会如何行动呢?显然,支付表为(表 9):

Table 9. The prisoner's dilemma 表 9. 囚徒困境

		嫌疑人2	
		供认	不供认
/維 長 人 1	供认	$(-3, -3)^{R,N}$	(0, -12)
嫌疑人1	不供认	(-12, 0)	(-1, -1)

林志 | 名次博弈

如果两嫌疑人关心坐牢时间的相对数超过绝对数,上述问题可以看成 2 - 人有限名次博弈,其中 $f_1^0 = f_2^0 = 0$,此时,该问题累积支付表与支付表相同。

容易验证: (供认,供认)是一个惟一的名次均衡。

假设 $f_1^0 = -10$, $f_2^0 = -1$ (这可解释为:嫌疑人 1 将因其它罪行被判坐牢 10 个月,嫌疑人 2 将因其它罪行被判坐牢 1 个月,加上现在指控的罪行,其实际坐牢月数为所有罪行判罚坐牢月数之和),此时,该问题累积支付表为(表 10):

 嫌疑人 2

 嫌疑人 1
 供认 (-13, -4)^{R,N} (-10, -13)

 嫌疑人 1
 (-22, -1)
 (-11, -2)

Table 10. The prisoner's dilemma 表 10. 囚徒困境

容易验证(供认,供认)仍是一个惟一的名次均衡。事实上,在囚徒困境问题中,无论各嫌疑人的初始支付值是多少,(供认,供认)不仅是惟一的名次均衡,也是惟一的 Nash 均衡。

该例说明,在名次博弈中,个体理性与集体理性的矛盾,仍然难以协调。实际上,在名次博弈中的局中人 之间,本身就存在某种程度的竞争关系,得到这一结果,也在意料之中。

下面的例子被称为性别战问题, 见文献[4]。

例 3.2. 一对夫妻,准备安排业余活动,丈夫喜欢看足球比赛,妻子喜欢看歌剧表演,但他们愿意在一起,不愿分开,其支付表如下(表 11),问他们会如何选择?

		妻子	
		足球	歌剧
丈夫	足球	(3, 2)	(0, 0)
	歌剧	(0, 0)	(2, 3)

Table 11. The battle of sex 表 11. 性别战

如果夫妻间关心各自得分的相对数超过绝对数,上述问题可以看成 2 - 人有限名次博弈问题,其中 $f_1^0=f_2^0=0$,此时,其累积支付表与支付表相同。容易验证: (足球,歌剧)是一个惟一的名次均衡。

如果 $\left|f_1^0 - f_2^0\right| > 1$,容易验证: (足球,足球)和(歌剧,歌剧)都是名次均衡,如果 $1 \ge f_1^0 - f_2^0 > 0$,容易验证: (足球,足球)是一个惟一的名次均衡,如果 $0 > f_1^0 - f_2^0 \ge -1$,容易验证: (歌剧,歌剧)是一个惟一的名次均衡。事实上,在性别战问题中,无论夫妻两人的初始支付值是多少,(足球,足球)和(歌剧,歌剧)都是 Nash 均衡。

在性别战中,夫妻双方愿意在一起,不愿分开,那他们之间是不是一定不存在竞争关系呢?未必!比如有的夫妻个性好强,对配偶有支配欲望,这样的夫妻,现实生活中并不少见,因此,夫妻间进行名次博弈也是正常的,更重要的是,性别战问题,主要并不是用于解决夫妻间的问题。当 $f_1^0 = f_2^0 = 0$ 时,可解释为夫妻间实力相同,任何一方都无力支配另一方,其结果是双方互不让步,各干各的是最可能的选择,即:丈夫看足球比赛,妻子看歌剧表演;当 $\left|f_1^0 - f_2^0\right| > 1$ 时,可解释为夫妻间实力相差悬殊,不管如何选择,博弈结果不能改变优势方的支配地位,这样双方是容易妥协的,现实生活中也经常看到这种情况,当夫妻双方差异较大时,夫妻关系经常比较和谐。当 $1 \ge f_1^0 - f_2^0 > 0$ 时,这可解释为丈夫比妻子稍强,为了巩固自己的优势地位,不太可能作出让步,而妻子的选择无力改变自己的弱势地位,考虑到夫妻感情而屈从于丈夫是妻子更可能的选择:夫妻双方都看足

球比赛。当 $0 > f_1^0 - f_2^0 \ge -1$ 时,可同样解释。通过名次博弈结果分析说明,对于关心各自支付的相对数超过绝对数的夫妻,当夫妻间差异大(初始支付值相差大)时,夫妻间较和谐,关系较稳定;当夫妻间差异较小(初始支付值相差小)时,强的一方往往有较强的支配欲望,弱的一方无力改变弱势地位,屈从于强势方是最可能的选择;当夫妻双方实力完全相同(初始支付值相同)时,夫妻双方难以相互影响,夫妻关系不易稳定。

下面的例子经过了改动, 其原型见文献[5](P55)。

例 3.3. 假定有 A、B 两人,A 拥有 2a 美元,B 拥有 0 美元,A、B 两人共同分配 100 美元,分配规则是:在不事先交流的情况下,A 提出份额 $x(100 \ge x \ge 0)$,B 提出份额 $y(100 \ge y \ge 0)$,如果 x + y = 100,那么,A 获得 x 美元,B 获得 y 美元,否则两人都获得 0 美元。现在的问题是:A 和 B 的会如何选择?

如果 A 和 B 两人关心各自所分得美元的相对数超过绝对数,上述问题可以看成 2-人有限名次博弈问题 $\Gamma = \left\{ K_i, f_i^0, f_i \right\}_{i \in I}$, 其中 $I = \left\{ A, B \right\}$, $K_A = \left\{ x : 100 \ge x \ge 0 \right\}$, $K_B = \left\{ y : 100 \ge y \ge 0 \right\}$, $f^0 = \left(f_A^0, f_B^0 \right) = \left(2a, 0 \right)$, 支付函数分别是:

$$f_{A} = \begin{cases} x & \text{如果 } x + y = 100 \\ 0 & \text{否则} \end{cases}$$
 $f_{B} = \begin{cases} y & \text{如果 } x + y = 100 \\ 0 & \text{否则} \end{cases}$

累积支付函数分别是: $F_A = f_A^0 + f_A$; $F_B = f_B^0 + f_B$, 即为:

$$F_A =$$
 $\begin{cases} 2a + x & \text{如果 } x + y = 100 \\ 2a & \text{否则} \end{cases}$ $F_B = \begin{cases} y & \text{如果 } x + y = 100 \\ 0 & \text{否则} \end{cases}$

如果 a=0 ,容易验证 (50,50) 是一个惟一的名次均衡;如果 $50 \ge a > 0$,容易验证名次均衡集合为 $\left\{(x,y): x+y=100, x>50-a, y\ge 0\right\}$;如果 a>50 ,容易验证名次均衡集合为 $\left\{(x,y): x+y=100, x\ge 0, y\ge 0\right\}$ 。

注意,无论 a 的值是多少, Nash 均衡集合都为 $\{(x,y): x+y=100, x\geq 0, y\geq 0\}$ 。

需要特别说明的是,当a=0时,(50,50)是一个惟一的名次均衡,这样的结果对 A 和 B 来说十分公平,换句话说,名次博弈的思想,可以导出公平的结果,而 Nash 博弈则得不到这样明显的结论。

2) 几个反映名次均衡与 Nash 均衡差异的例子

例 3.4. 考虑如下 2 - 人有限名次博弈问题, 支付表如下(表 12):

Table 12. Exist rank equilibrium and Nash equilibrium, but different 表 12. 名次均衡与 Nash 均衡都存在,但不同

		局中人 2	
		$eta_{ m l}$	eta_2
民由人 1	$lpha_{ m l}$	$(2,4)^R$	$(5,5)^N$
局中人 1	α_2	(1, 2)	(3, 2)

如果 $f_1^0=f_2^0=0$,其累积支付表与支付表相同。容易验证 (α_1,β_1) 是一个惟一的名次均衡。如果 $f_1^0=1,f_2^0=0$,其累积支付表为(表 13):

Table 13. Exist rank equilibrium and Nash equilibrium, but different 表 13. 名次均衡与 Nash 均衡都存在,但不同

		局中人 2	
		eta_1	eta_2
	$lpha_{ m l}$	(3, 4)	(6, 5)
局中人 1	$lpha_2$	$(2,2)^R$	(4, 2)

容易验证 (α_2, β_1) 是一个惟一的名次均衡。需要说明的是,无论各局中人的初始支付值是多少, (α_1, β_2) 都是一个惟一的 Nash 均衡。

例 3.5. 考虑如下 2 - 人有限名次博弈问题,其中 $f_1^0 = f_2^0 = 0$,支付表如下(表 14):

Table 14. No rank equilibrium and Nash equilibrium 表 14. 名次均衡与 Nash 均衡都不存在

		局中人 2	
		$eta_{ m l}$	eta_2
局中人 1	$\alpha_{ m l}$	(3, 4)	(4, 2)
	$lpha_2$	(5, 1)	(2, 3)

其累积支付表与支付表相同。容易验证: 名次均衡和 Nash 均衡都不存在。

例 3.6. 考虑如下 2 - 人有限名次博弈问题,其中 $f_1^0 = f_2^0 = 0$,支付表如下(表 15):

Table 15. Exist Nash equilibrium, no rank equilibrium 表 15. 存在 Nash 均衡,不存在名次均衡

		局中人 2	
		eta_1	eta_2
局中人 1	$\alpha_{ m l}$	$(3,4)^N$	(1, -2)
	α_2	(1, -1)	$(2,3)^N$

其累积支付表与支付表相同。容易验证: (α_1,β_1) 和 (α_2,β_2) 都是 Nash 均衡,但不存在名次均衡。

例 3.7. 考虑如下 2 - 人有限名次博弈,其中 $f_1^0 = f_2^0 = 0$,支付表如下(表 16):

Table 16. Exist rank equilibrium, no Nash equilibrium 表 16. 存在名次均衡,不存在 Nash 均衡

		局中人 2	
		$eta_{ m l}$	eta_2
局中人 1	$\alpha_{ m l}$	$(4,4)^{R}$	(3, 2)
	α_2	(5, 6)	(2, 7)

其累积支付表与支付表相同。容易验证: (α_1, β_1) 是惟一的名次均衡,但不存在 Nash 均衡。

4. 结论

现在,让我们来回答文章开始时提出的问题,它可以被看成一个 3 - 人名次博弈。对问题(1),初始值为 $f_1^0=10, f_2^0=30, f_3^0=0$,累积支付表为(表 17 和 18):

Table 17. Player C chooses strategy γ_1 表 17. 若选手 C 选择策略 γ_1

		选手 B	
		$eta_{ m l}$	eta_2
选手 A	$\alpha_{ m l}$	(70, 140, 90)	(60, 70, 61)
	$lpha_2$	(40, 65, 37)	(50, 45, 60)

林志 | 名次博弈

Table 18. Player C chooses strategy γ₂ 表 18. 若选手 C 选择策略 γ₂

		选手 B	
		$eta_{ m l}$	eta_2
选手 A	$\alpha_{ m l}$	(130, 140, 92)	(100, 100, 88)
	$lpha_2$	$(140, 180, 100)^R$	$(260, 320, 330)^N$

容易验证 $x^* = (\alpha_2, \beta_1, \gamma_2)$ 是一个惟一的名次均衡,即:选手 A 的最佳策略是 α_2 ,选手 B 的最佳策略是 β_1 ,选手 C 的最佳策略是 γ_2 ,博弈结果名次列为 $u^* = (2,1,3)$,也就是说,在预赛的第二轮结束后,选手 B 将直接进入 决赛,选手 A 和 C 需要进入预赛的第三轮比赛,其中,选手 A 进入决赛的概率大约是 $\frac{1}{2}$,选手 C 进入决赛的概率大约是 $\frac{1}{6}$ 。

对问题(2),初始值为 $f_1^0 = f_2^0 = f_3^0 = 0$,其累积支付表与支付表相同(见表 1~2)。容易验证 $x^* = (\alpha_1, \beta_1, \gamma_1)$ 是一个惟一的名次均衡,即:选手 A 的最佳策略是 α_1 ,选手 B 的最佳策略是 β_1 ,选手 C 的最佳策略是 γ_1 ,博弈结果名次列为 $u^* = (3,1,2)$,也就是说,在预赛的第二轮结束后,选手 B 将直接进入决赛,选手 A 和 C 需要进入预赛的第三轮比赛,其中,选手 C 进入决赛的概率大约是 $\frac{1}{2}$,选手 A 进入决赛的概率大约是 $\frac{1}{6}$ 。

但是,在上述问题中, $x^* = (\alpha_2, \beta_2, \gamma_2)$ 是惟一的 Nash 均衡点,这意味着无论是问题(1)还是问题(2),在预赛的第二轮结束后,选手 C 将直接进入决赛,选手 A 和 B 需要进入预赛的第三轮比赛,其中,选手 B 进入决赛的概率大约是 $\frac{1}{2}$,选手 A 进入决赛的概率大约是 $\frac{1}{6}$ 。根据 Nash 均衡得到的结果,与根据名次均衡得到的结果是完全不同的,那么,究竟哪一个结果更可能发生呢?只要稍作分析就会发现,根据 Nash 均衡得到的结果不太可能真正发生,至少对问题(2)而言,在任何情况下,选手 A 选择策略 α_1 总是比策略 α_2 更有利(或者名次数更小,或者名次数相同但支付值更大),也就是说,选手 A 不会选择策略 α_2 ,即 Nash 均衡结果不可能真正发生,名次均衡结果是局中人更合理的选择。

总之,对上面的问题而言,只要各局中人是理性的,名次均衡的结果比 Nash 均衡的结果更合理,更可能发生。

5. 致谢

本研究工作由重庆市科委项目资助,项目编号: CQCSTC(2011AC6104)。

参考文献 (References)

- [1] J. Nash. Equilibrium points in N-person games. Proceedings of the National Academic of Sciences, USA, 1950, 36(1): 48-49.
- [2] J. Nash. Noncooperative games. Annals of Mathematics, 1951, 54(2): 286-295.
- [3] R. Cambeland, L. Sowden, Eds. Paradoxes of rationality and cooperation. Prisoner's dilemma and Newcomb's problem. Vancouver: The University of British Columbia Press, 1995: 3.
- [4] R. D. Luce, H. Raiffa. Games and decisions: An introduction and critical survey. New York: Wiley Sons, 1957.
- [5] 汪贤裕, 肖玉明编著. 博弈论及其应用[M]. 北京: 科学出版社, 2008: 55.