AAM  >> Vol. 2 No. 2 (May 2013)

    一类新的双层纺织材料厚度设计反问题
    A New Inverse Problem of Thickness Design for Bi-Layer Textile Material

  • 全文下载: PDF(682KB) HTML    PP.89-97   DOI: 10.12677/AAM.2013.22012  
  • 下载量: 1,312  浏览量: 4,269  

作者:  

李向杰:浙江理工大学数学系,杭州

关键词:
双层纺织材料厚度设计热湿传递反问题最大概率最小模 Bi-Layer Textiles; Thickness Design; Heat and Moisture Transfer; Inverse Problem; A Minimum Norm with a Maximum Probability

摘要:

本文基于低温环境下平行圆柱孔结构的纺织材料热湿传递稳态模型,研究了一类双层纺织材料厚度设计反问题。首先给出了一个双层纺织材料热湿传递稳态模型,并采用有限差分方法求解该问题。然后,根据服装热湿舒适性指标,将纺织材料内层厚度看成一个未知量,提出了一类双层纺织材料厚度设计反问题,将该反问题归结为一个最大概率最小模问题,采用罚函数法将该约束优化问题转换为无约束的优化问题,并采用粒子群算法求解。数值结果说明了双层纺织材料厚度设计反问题提法的合理性,以及粒子群算法的有效性和鲁棒性。

This paper studies a new inverse problem of estimating bi-layer textile fabrics thickness based on a steady-state heat and moisture transfer model. We first present a heat and moisture transfer model for bi-layer textile materials with boundary conditions and solve them by finite difference method. According to the requirement of clothing’s thermal and moisture comfort, we formulate the inverse heat and moisture transfer problem that estimate the thickness of inner fabric as a minimum norm problem with a maximum probability constraint model. We use a static penalty method to convert the constrained problem into an equivalent unconstrained minimization problem and obtain the solution for the optimization problem by a stochastic search method, known as particle swarm optimization algorithm. Numerical experiments show that our new model is quiet acceptable, and the proposed numerical method’s validity and robustness.

文章引用:
李向杰. 一类新的双层纺织材料厚度设计反问题[J]. 应用数学进展, 2013, 2(2): 89-97. http://dx.doi.org/10.12677/AAM.2013.22012

参考文献

[1] A. P. Gagge, A. C. Burton and H. C. Bazett. A practical system of units for the description of the heat exchange of man with his environment. Science, 1941, 94(2445): 428-430.
[2] A. H. Woodcock. Moisture transfer in textile systems, Part I. Textile Research Journal, 1962, 32(8): 628-633.
[3] A. H. Woodcock. Moisture transfer in textile systems, Part II. Textile Research Journal, 1962, 32(9): 719-723.
[4] B. Farnworth. A numerical model of the combined diffusion of heat and water vapor through clothing. Textile Research Journal, 1986, 56(11): 635-665.
[5] W. A. Lotens, G. Havenith. Calculation of clothing insulation and vapor resistance. Ergonomics, 1991, 34(2): 233-254.
[6] P. S. H. Henry. Diffusion in absorbing media. Proceedings of the Royal Society A, 1939, 171(2): 215-241.
[7] J. T. Fan, X. Y. Cheng and Y. S. Chen. An experimental investigation of moisture absorption and condensation in fibrous insulations under low temperature. Experimental Thermal and Fluid Science, 2003, 27(6): 723-729.
[8] D. H. Xu, J. X. Cheng and X. H. Zhou. An inverse problem of thickness design for single layer textile material under low temperature. Journal of Math-for-Industry, 2010, 2(B-4): 139-146.
[9] D. H. Xu, J. X. Cheng and Y. B. Chen. An inverse problem of thickness design for bilayer textile materials under low temperature. Journal of Physics: Conference Series, 2011, 290(1): 139-146.
[10] 黄建华. 服装的舒适性[M]. 北京: 科学出版社, 2008: 25-26, 48.
[11] 卓金武, 魏永生, 秦健, 李必文. MATLAB在数学建模中的应用[M]. 北京: 北京航空航天大学出版社, 2011.