AAM  >> Vol. 2 No. 3 (August 2013)

    抛物方程基于POD的降阶外推有限元格式
    A POD-Based Reduced-Order Extrapolating Finite Element Formulation for Parabolic Equations

  • 全文下载: PDF(902KB)    PP.99-106   DOI: 10.12677/AAM.2013.23013  
  • 下载量: 1,436  浏览量: 6,267   国家自然科学基金支持

作者:  

腾 飞:凯里学院数学科学学院,凯里;
孙 萍:贵州师范大学数学与计算机科学学院,贵阳;
罗振东:华北电力大学数理学院,北京

关键词:
特征投影分解方法降阶外推有限元格式误差估计 Proper Orthogonal Decomposition (POD) Technique; Reduced-Order Extrapolating Finite Element Formulation; Error Estimate

摘要:

用特征投影分解(Proper Orthogonal Decomposition,简记POD)方法去建立二维抛物方程的一种基于POD的时间二阶精度的降阶外推有限元格式;并给出误差估计和求解这种降阶外推有限元格式的算法实现。最后用数值例子验证这种基于POD方法降阶外推有限元格式的可行性和有效性。

A POD-based reduced-order extrapolating finite element formulation with second-order time accuracy for two-dimensional parabolic equations is established by using the proper orthogonal decomposition (POD) technique, and the algorithm implementation of error estimation and solution for POD-based reduced- order extrapolating finite element formulation is provided. Finally, a numerical example is used to verify the feasibility and efficiency of the POD-based reduced-order extrapolating finite element formulation method.

文章引用:
腾飞, 孙萍, 罗振东. 抛物方程基于POD的降阶外推有限元格式[J]. 应用数学进展, 2013, 2(3): 99-106. http://dx.doi.org/10.12677/AAM.2013.23013

参考文献

[1] F. D’Andrea, R. Vautard. Extratropical low-frequency variability as a low-dimensional problem, I: A simplified model. Quarterly Journal of the Royal Meteorological Society, 2001, 127(574): 1357-1374.
[2] V. Thomee. Partial differential equations with numerical methods. Berlin: Springer-Verlag, 2003.
[3] 罗振东. 混合有限元方法基础及其应用[M]. 北京: 科学出版社, 2006.
[4] K. Kunisch, S. Volkwein. Galerkin proper orthogonal decomposition methods for parabolic problems. Numerische Mathematik, 2001, 90(1): 117-148.
[5] 腾飞, 孙萍, 罗振东. 抛物型方程基于POD方法的时间二阶中心差的二阶精度简化有限元格式[J]. 计算数学, 2011, 33(4): 373-386.
[6] 罗振东, 陈静, 谢正辉, 安静, 孙萍. 抛物型方程基于POD方法的时间二阶精度CN有限元降维格式[J]. 中国科学A辑: 数学, 2011, 41(5): 447-460.
[7] P. Sun, Z. D. Luo and Y. J. Zhou. Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations. Applied Numeri-cal Mathematics, 2010, 60(1-2): 154-164.
[8] W. Rudin. Functional and analysis (2nd Edition). New York: McGraw-Hill Companies, 1973.