AMB  >> Vol. 2 No. 3 (September 2013)

    盐胁迫下接种丛枝菌根真菌(AMF)对小叶锦鸡儿的生长及总黄酮含量的影响
    Effect of Arbuscular Mycorrhizal Fungi on Growth and the Total Flavonoids of Caragana microphylla Lam. under Salt Stress

  • 全文下载: PDF(293KB) HTML   XML   PP.71-77   DOI: 10.12677/AMB.2013.23014  
  • 下载量: 1,480  浏览量: 9,574   国家自然科学基金支持

作者:  

张华,包玉英:内蒙古大学生命科学学院,呼和浩特;
特布沁:内蒙古医科大学,呼和浩特

关键词:
小叶锦鸡儿NaCl胁迫菌根侵染率菌根依赖性总黄酮Caragana microphylla Lam.; Nacl Stress; Mycorrhizal Infection Rate; Mycorrhizal Dependence; Flavonoids

摘要:

本文利用盆栽试验,研究不同NaCl盐浓度条件下,接种摩西球囊霉(Glomus mosseae)对小叶锦鸡儿(Caragana microphylla Lam.)生物量及总黄酮含量的影响。结果显示:1) 在正常生长条件下,与不接种(对照)相比,接种G. mosseae小叶锦鸡儿地上部干重、地下部干重和总干重分别增加了17.9%29.4%20.0%;叶、茎和根中总黄酮含量分别提高了9.0%0.9%11.7%其中,除茎中的总黄酮差异性不显著外,其余指标与对照差异均达到显著性水平(P < 0.05)2) NaCl盐胁迫下,小叶锦鸡儿的生长受到明显的抑制,其生物量和总黄酮含量显著降低,并随盐浓度的增加而加剧3) 盐胁迫下接种G. mosseae显著促进了小叶锦鸡儿的生长,植物干重和总黄酮含量均比未接菌植株高。同时,NaCl盐胁迫也影响小叶锦鸡儿的菌根侵染率和菌根依赖性。盐处理和AMF对生物量干重、叶和根中总黄酮含量的交互作用显著(P < 0.05)表明AMF不仅能提高小叶锦鸡儿在盐碱地中的生长能力并减轻盐胁迫对植物造成的产量损失,同时也增加了它的黄酮含量,对于推动AMF在盐碱地区植物资源生产与开发利用中具有重要的意义。
A pot experiment was conducted to test the effect of Glomus mosseae on the growth and the total flavonoids of Caragana microphylla Lam. under different NaCl salt treatments. The result indicated that: 1) The inoculation of G. mosseae promoted the growth of C. microphylla under natural growed conditions. The dry weight of the overground part, underground part and the total were increased by 17.9%, 29.4%, 20.0% respectively and the flavonoids content in leaves, stems and roots were increased by 9.0%, 0.9%, 11.7% respectively than non-inoculated plants. Among them, they have a significant difference (P < 0.05)in addition to the total flavonoids content of stems compare to non- nioculated. 2) The biomass and total flavonoids content of C. microphylla significantly reduced under NaCl Stress, and remarkably aggravated with the increasing of the salt stress degree. 3) AMF futher promoted the growth of C. microphylla under salt-stress. The total dry weight and the flavonoids content were higher in inoculated plant than non- inoculated plants. The mycorrhizal infection rate and mycorrhizal dependence of C. microphylla were also affected by NaCl. NaCl and AMF have significant (P < 0.05) interaction effect on the dry weight and the flavonoids content in leaves and roots. AMF not only can improve the growth ability but also can reduce the loss of plant production caused by salt-stress and increase its flavonoids content. It plays an important role to promote the development and utilization of the regional plant resources in saline.

文章引用:
张华, 包玉英, 特布沁. 盐胁迫下接种丛枝菌根真菌(AMF)对小叶锦鸡儿的生长及总黄酮含量的影响[J]. 微生物前沿, 2013, 2(3): 71-77. http://dx.doi.org/10.12677/AMB.2013.23014

参考文献

[1] B. Giri, R. Kapoor and K. G. Mukerji. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biology and Fertility Soils, 2003, 38(3): 170-175.
[2] 刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000.
[3] W. Schliemann, B. Kolbe, J. Schmidt, et al. Accumulation of apocarotenoids in mycorrhizal roots of leek (Allium porrum). Phytochemistry, 2008, 69(8): 1680-1688.
[4] S. Zubek, S. Mielcarek and K. Turnau. Hypericin and pseu- dohypericin concentrations of a valuable medicinal plant Hy- pericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza, 2011, 22(2): 149-152.
[5] P. Rosa, A. Ricardo and J. M. Ruiz-Lozano. Salinity stress alle- viation using arbuscular mycorrhizal fungi: A review, Agronomy for Sustainable Development, 2012, 32(1): 181-200.
[6] 贺学礼, 刘媞, 安秀娟等. 水分胁迫下AMF对柠条锦鸡儿(Caragana korshinskii)生长和抗旱性的影响[J]. 生态学报, 2009, 29(1): 47-52.
[7] 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1993: 18.
[8] 蒙秋霞, 张丽珍, 牛宇. 不同生长时期小叶锦鸡儿黄酮类化合物含量的变化动态[J]. 草地学报, 2011, 19(6): 943-947.
[9] 蒙秋霞, 牛宇, 牛西午. 锦鸡儿属几种植物的总黄酮含量测定[J]. 华北农学报, 2005, 20(3): 43-45.
[10] J. M. Phillips, D. S. Hayman. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapidassessment of infection. Transaction of the British Mycological Society, 1970, 55(1): 158-161.
[11] D. J. Bogyaraj. Vesicular-arbuscular: Application in agriculture. In: Techniques for mycorrhizal research, method in microbio- logy. London: Academic Press, 1992: 818-833.
[12] M. R. Lambais, W. F. Ríos-Ruiz and R. M. Andrade. Antioxidant responses in bean (Phaseolus vulgaris) roots colonized by arbu- scular mycorrhizal fungi. New Phytologist, 2003, 160(2): 421- 428.
[13] Q. S. Wu, Y. N. Zou and R. X. Xia. Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. European Journal of Soil Biology, 2006, 42(3): 166-172.
[14] 张瑞芹, 赵海泉, 朱红惠等. 丛枝菌根真菌诱导植物产生酚类物质的研究进展[J]. 微生物学通报, 2010, 37(8): 1216- 1221.
[15] G. Larose, R. Chênevert, P. Moutoglis, et al. Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular myco- rrhizal fungus. Journal of Plant Physiology, 2002, 159: 1329- 1339.
[16] M. A. Ponce, J. M. Scervino, R. Erra-Balsells, et al. Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry, 2004, 65(13): 1925-1930.
[17] P. Zuccarini, P. Okurowska. Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. Journal of Plant Nutrition, 2008, 31(1): 497- 513.
[18] S. Shokri, B. Maadi. Effect of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. Journal of Agronomy, 2009, 8(2): 79-83.
[19] A. A. H. A. Latef, H. Chaoxing. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae, 2011, 127(3): 228-233.
[20] 徐静, 董宽虎, 高文俊等. 丛枝菌根真菌提高植物耐盐能力的作用机制[J]. 草业与畜牧, 2010, 6(175): 5-8.
[21] T. Qu, Z. B. Nan. Research progress on responses and mecha- nisms of crop and grass under drought stress. Acta Prataculturae Sinica, 2008, 17(2): 126-135.
[22] 孟静静, 贺学礼. 干旱胁迫下AMF对丹参生长和养分含量的影响[J]. 河北农业大学学报, 2011, 34(1): 51-55, 61.
[23] 林先贵, 郝文英. 不同植物对VA菌根菌的依赖性[J]. 植物学报, 1989, 31(9): 721-725.
[24] 贺学礼, 赵丽莉, 杨宏宇. 黄土高原柠条锦鸡儿根际AMF生态学研究[J]. 2007, 15(2): 81-84.
[25] 贺学礼, 陈烝, 郭辉娟等. 荒漠柠条锦鸡儿AMF多样性[J]. 生态学报, 2012, 32(10): 3041-3049.
[26] F. Jahromi, R. Aroca, R. Porcel, et al. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology, 2008, 55(1): 45-53.
[27] 韩冰, 郭世荣, 贺超兴等. 丛枝菌根真菌对盐胁迫下黄瓜植株生长、果实产量和品质的影响[J]. 应用生态学报, 2012, 23(1): 154-158.
[28] C. Plenehette, J. A. Fortin and V. Furlna. Growth responses of several plants species to mycorrhiazae in a soil of low fertility. I. Mycorrhizal dependency under field conditions. Plant & Soil, 1983, 70: 199-209.