AIRR  >> Vol. 2 No. 4 (November 2013)

    基于改进粒子群优化的多机器人目标一致性控制
    Destination Consensus Control of Multi-Robots Based on Modified Particle Swarm Optimization

  • 全文下载: PDF(298KB) HTML   XML   PP.101-105   DOI: 10.12677/AIRR.2013.24019  
  • 下载量: 1,310  浏览量: 5,828   国家自然科学基金支持

作者:  

倪春波,孔一斐,杨月全:扬州大学信息工程学院,扬州;
曹志强:中国科学院自动化研究所,复杂系统管理与控制国家重点实验室,北京

关键词:
多机器人粒子群优化一致性运动控制Multi-Robots; Particle Swarm Optimization; Consensus; Motion Control

摘要:

针对不确定环境中障碍物的形状和位置等信息未知情形,通过机器人自身传感器获取环境信息,采用最小二乘方法对运行环境中两类障碍物进行拟合估计,提高机器人对环境的感知识别能力。将机器人运动目标信息、周围环境信息、机器人运动信息等衍生的适应度分量引入改进的粒子群优化适应度函数,从而提高粒子的局部选优能力;在此基础上,实现了多机器人系统的目标一致性运动控制。通过仿真实验进一步验证了该策略的可行性和有效性。
>Considering the uncertain information about the shape, size and position of an obstacle in a dynamic working environment, obstacle information is estimated by employing the least square method and acquisition data from robot sensors, which can lead to improvement of environment perception and determination capability. By defining the three fitness components via destination information, ambient environment information, robot motion information, a modified particle swarm optimization scheme is proposed to achieve the destination consensus of multi-robot systems with the advantage of good local optimization virtue. Finally, the simulation experiments demonstrated the effectiveness and feasibility of the proposed strategy.

文章引用:
倪春波, 孔一斐, 杨月全, 曹志强. 基于改进粒子群优化的多机器人目标一致性控制[J]. 人工智能与机器人研究, 2013, 2(4): 101-105. http://dx.doi.org/10.12677/AIRR.2013.24019

参考文献

[1] Savkin, A.V. and Teimoori, H. (2010) Decentralized navigation of groups of wheeled mobile robots with limited communication, IEEE Transactions on Robotics, 26, 1099-1104.
[2] Hou, S.P. and Cheah. C.C. (2012) Dynamic compound shape control of robot swarm. IET Control Theory and Application, 6, 454-460.
[3] Cucker, F. and Dong, J. (2010) Avoiding collisions in flocks. IEEE Transactions on Automatic Control, 55, 1239-1241.
[4] Tian, Y.P. and Liu. C.L. (2008) Consensus of multi-agent sys- tems with diverse input and communication delays. IEEE Transactions on Automatic Control, 53, 2123-2124.
[5] Cao, H., Chen, J., Mao, Y.T., et al. (2010) Formation control based on flocking algorithm in multi-agent system. Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, 7-9 July 2010, 2289-2291.
[6] Kennedy, J. and Eberhart, R.C. (1995) Particle swarm opti- mization. Proceedings of IEEE International conference on Neural Networks, Perth, 27 Nov. 1995-1 Dec. 1995, 1942-1948.
[7] V Tandon, (2001) NC end milling optimization using evolu- tionary Computation. International Journal of Machine Tools and Manufacture, 42, 595-605.
[8] 高鹰, 姚振坚, 谢胜利 (2006) 基于种群密度的粒子群优化算法. 系统工程与电子技术, 6, 922-924,932.
[9] 胡玉兰, 姜明洋, 赵慧静 (2009) 基于改进粒子群算法的移动机器人路径规划方法研究. 计算机工程与科学, 6, 139-141.
[10] 雷艳敏, 朱齐丹, 冯志彬 (2011) 基于速度障碍和行为动力学的动态路径规划. 华中科技大学学报(自然科学版), 4, 15- 19.
[11] 张涛, 侯媛彬, 史小茹 (2011) 基于改进粒子群算法的消防机器人路径规划. 微计算机信息, 4, 207-209.
[12] 杨月全, 韩飞, 曹志强, 金露 (2013) 基于激光传感器的动态拟合避障控制与仿真. 系统仿真学报, 4, 704-708.