AAM  >> Vol. 2 No. 4 (November 2013)

    非线性离散的Klein-Gordon方程的对称约化
    Symmetries of the Discrete Nonlinear Klein-Gordon Eq-uation

  • 全文下载: PDF(132KB) HTML    PP.191-193   DOI: 10.12677/AAM.2013.24026  
  • 下载量: 1,220  浏览量: 3,877  

作者:  

潘 阳,张丽华,李德生:沈阳师范大学数学与系统科学学院,沈阳;
潘树丰:吉林省公主岭市杨大城子镇第二中心小学,公主岭市

关键词:
Klein-Gordon方程相似变换不变解 Klein-Gordon Equation; Similarity Transformation; Invariant Solution

摘要:

本文把离散的Lie点对称群分析方法应用于非线性离散的Klein-Gordon方程。由于该方程不易应用李点对称进行约化,所以本文首先引入一个相似变换将其转化为易被李点对称约化的新方程,然后用李点对称方法约化新方程得到其不变解,最后再通过相似变换得到原非线性离散的Klein-Gordon方程的解。
>In this paper, the discrete Lie point symmetry group analysis method is applied on the discrete nonlinear Klein-Gordon equation. Since this equation is not easy to be reduced by Lie point symmetry method, firstly, this paper introduces a similarity transformation to change this equation into a new equation which can be reduced easily by Lie point symmetry method. Then the new equation is reduced by Lie point symmetry method and its invariant solutions are obtained. Finally, the solutions of the primal discrete nonlinear Klein- Gordon equation are acquired by the similarity transformation again.

文章引用:
潘阳, 张丽华, 李德生, 潘树丰. 非线性离散的Klein-Gordon方程的对称约化[J]. 应用数学进展, 2013, 2(4): 191-193. http://dx.doi.org/10.12677/AAM.2013.24026