AAM  >> Vol. 3 No. 1 (February 2014)

    无爪图中子图的度和与Hamilton连通性
    The Hamilton-Connectivity with the Sum Degree of Subgraph in Claw-Free Graphs

  • 全文下载: PDF(371KB)    PP.8-16   DOI: 10.12677/AAM.2014.31002  
  • 下载量: 1,191  浏览量: 3,716   科研立项经费支持

作者:  

米 晶,王江鲁:山东师范大学数学科学学院,济南

关键词:
无爪图不相邻子图子图的度Hamilton路Claw-Free Graph; Non-Adjacent Subgraph; Degree of Subgraph; Hamilton-Path

摘要:

本文定义了子图的度的概念,并利用子图的度给出如下结果:设Gn2-连通无爪图,δ(G) 3,如果G中任意两个分别同构于P3K2的不相邻子图H1H2的度和,对于任意的u,v Î G,若{u,v}不构成割集,那么u,v间存在Hamilton路。

In this paper, we defined the degree of subgraph, and got the following result on the basis of the degree of subgraph: Let G be a 2-connected claw-free graph of order n, . If H1 and H2, any two non-adjacent subgraphs, are isomorphic to P3 and K2, respectively, and d(H1) + d(H2) ≥ n, for each pair of u,v Î G, when {u,v} isnt a cut set, there exists a Hamilton-path in u,v.

文章引用:
米晶, 王江鲁. 无爪图中子图的度和与Hamilton连通性[J]. 应用数学进展, 2014, 3(1): 8-16. http://dx.doi.org/10.12677/AAM.2014.31002