AMC  >> Vol. 2 No. 2 (April 2014)

    水凝胶的改性及其在生物医学中的应用研究进展
    The Progress of Modification and Biomedical Applications of Hydrogels

  • 全文下载: PDF(376KB) HTML    PP.32-37   DOI: 10.12677/AMC.2014.22005  
  • 下载量: 1,370  浏览量: 6,810   国家科技经费支持

作者:  

郭振超,胡 克,马晓娥,周乃珍,张天柱,顾 宁:东南大学生物科学与医学工程学院,南京;江苏省生物材料与器件重点实验室,南京

关键词:
复合水凝胶智能水凝胶改性水凝胶生物医学应用Composite Hydrogel Smart Hydrogels Modification of Hydrogel Biomedical Application

摘要:

水凝胶的改性是水凝胶在多方面获得应用的前提条件。本文重点综述了几类水凝胶的改性及其应用进展,包括聚乙烯醇(PVA)和明胶复合水凝胶、蛋白质水凝胶、新型智能水凝胶以及纳米水凝胶。同时指出要密切关注改性水凝胶的生物相容性、成本价格、生物可降解性、适用范围,使更多水凝胶能走向临床,获得更广泛的应用
Modification of hydrogels is the necessary precondition of their applications in many biomedical fields. This paper summarized the modification of composit hydrogel of Polyvinyl Alcohol (PVA) and gelatin, protein hydrogel, nano hydrogel and other smart hydrogels. At the same time, it also points out that it is important to keep a close eye on biocompatibility, modified cost, biodegradability and application range of modified hydrogels, in order to put these hydrogels to clinical application, and obtain a wider range of applications.

文章引用:
郭振超, 胡克, 马晓娥, 周乃珍, 张天柱, 顾宁. 水凝胶的改性及其在生物医学中的 应用研究进展 [J]. 材料化学前沿, 2014, 2(2): 32-37. http://dx.doi.org/10.12677/AMC.2014.22005

参考文献

[1] 杨连利, 梁国正 (2007) 水凝胶在医学领域的热点研究及应用. 材料导报, 21, 112-115.
[2] 马晓梅, 赵喜安, 唐小真 (2004) 智能型水凝胶. 化学通报, 24, 2117-2123.
[3] 王秀琴, 查刘生 ( 2012) 智能纳米水凝胶的应用研究进展. 化工新型材料, 11, 110-113.
[4] 李一凡, 刘捷, 李政雄 (2012) PVA水凝胶制备,改性及在生物医学工程中的研究进展. 硅谷, 7, 5-6.
[5] 董奋强, 崔英德, 崔亦华, 秦建忠 (2006) 蛋白高吸水凝胶研究的进展. 材料导报, 7, 46-50.
[6] Jeong, B., Bae, Y.H. and Kim, S.W. (1999) Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer ague- ous soiutions. Macromolecules, 21, 7064-7069.
[7] Bezemer, J.M., Radersma, R., Grijipma, D.W., et al. (2000) Zero-order release of lysozyme from poly(ethylene glycol)/poly(butylen eterephthalate) matrices . Journal of Controlled Release, 64, 179-192.
[8] Lin, H.H. and Cheng, Y.L. (2001) In-situ thermoreversible gelation of block and star copolymers of poly(ethylen eglycol) and poly(N-isopropylacrylamide) of varying architectures. Macromolecuels, 11, 3710-3715.
[9] Stenekes, R.J.H., Talsma, H. and Hennink, W.E. (2001) Formation of dextran hydrogels by crystallization. Biomaterials, 22, 1891-1898.
[10] Suzuki, K., Yumura, T., Tanaka, Y. and Akashi, M. (2001) Thermo-responsive release from interpenetrating porous silica-poly (N-isopropylacrylamide) hybrid gels. Journal of Controlled Release, 1, 183-189.
[11] Gong, J.P. and Osada, Y. (1995) Theoretical analysis of the cross linking effect on the polyelectrolyte-surfactant interaction. Journal of Physical Chemistry, 27, 10971-10975.
[12] Isogai, N., Narita, T., Chen, L., Hirata, M., Gong, J.P. and Osada, Y. (1999) Polymer-surfactant interactions: Their cooperativity and stoichiometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 147, 189-202.
[13] Miyazaki, T., Yamaoka, K., Kaneko, T., et al. (2000) Hydrogels with the ordered structures. Science and Technology of Advanced Materials, 1, 201-210.
[14] Vinogradov, S.V., Bronich, T.K., et al. (2002) Considerations in the Design and Development of Transport Inhibitorsas Adjuncts to Drug Therapy. Advanced Drug Delivery Reviews, 54, 135-1471.
[15] Ulanski, P. and Rosiak, J.M. (1999) The use of radiation technique in the synthesis of pmeric nanogels. Nuclear Instruments and Methods in Physics Research Section B, 151, 356-360.
[16] Capek, I. (2000) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Advances in Colloid and Interface Science, 88, 295-357.
[17] Leobandung, W., Ichikawa, H., Fukumori, Y., et al. (2002) Preparation of stable insulin-loaded nanospheres of p(ethylene glycol) macromers and N-isopropylacrylamide. Journal of Controlled Release, 80, 357-363.
[18] Kataoka, K., Matsumoto, T., Yokoyama, M., et al. (2000) Doxorubicin-loaded poly(ethylene glycol)-poly(b-benzyl- Laspartate) copolymer micelles: Their pharmaceutical characteristics and biological significance. Journal of Controlled Release, 64, 143-153.
[19] Shin, Y., Chang, J.H., Liu, J., et al. (2001) In vitro uptake of pstyrene microspheres: effect of particle size, cell line and cell density. Journal of Controlled Release, 73, 39-51.
[20] Neeraj, K., V Ravikumar Majeti, N., Domb, A.J. (2001) Biodegradable block copolymers. Advanced Drug Delivery Reviews, 1, 23-44.
[21] 查刘生, 刘紫微 (2007) 生物分子识别响应性水凝胶及其智能给药系统. 智能系统学报, 6, 38-47.
[22] Xue, C.-Y. and Yang, K.-L. (2008) Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins. Langmuir, 2, 563-567.
[23] 吴芳, 张源, 编译 (2003) 水凝胶控释脉冲释药系统. 国外医学药学分册, 30, 114-117.
[24] 郭锦棠, 李雄勇, 李伶 (2004) 水凝胶及其在药物控释体系上的应用. 化学通报, 3, 198-204.