AAM  >> Vol. 3 No. 2 (May 2014)

    显式计算Z2对称系统的Hopf和Bautin分岔
    Explicit Computations of Hopf and Bautin Bifurcations in Z2-Symmetric Systems

  • 全文下载: PDF(541KB) HTML   XML   PP.54-61   DOI: 10.12677/AAM.2014.32009  
  • 下载量: 1,253  浏览量: 6,145   科研立项经费支持

作者:  

彭国俊,傅仙发:广东技术师范学院计算机科学学院,广州

关键词:
Hopf分岔Bautin分岔 Z2对称规范型同调方法Hopf Bifurcation Bautin Bifurcation Z2-Symmetric Normal Form Homogical Method

摘要:

本文用同调方法导出任意维Z2对称系统的HopfBautin分岔规范型的计算公式。在对实际Z2对称系统进行HopfBautin分岔分析时,可以直接利用这些公式来计算第一和第二Lyapunov系数,从而判断对应分岔是否退化。进一步地,还可以利用开折参数的计算公式来确定系统参数在临界值附近扰动时,对应的拓扑结构。因此,实际建立了任意维Z2对称系统HopfBautin分岔的参数和其结构之间的对应关系。

By using a homogical method, we drive out computational formulae for normal forms of the Hopf and Bautin bifurcations in Z2-symmetric systems. For practical bifurcation analysis of Hopf and Bautin in a Z2-symmetric system, we can use these formulae to compute the first and the second Lyapunov coefficients, and check whether the bifurcation is degenerate. Furthermore, we can use the formulae of unfolding parameters to decide the topological structures when parameters perturb in a neighborhood of the critical values. So, we construct the relation between the parameters and the structures for Hopf and Bautin bifurcations in any Z2-symmetric systems.

文章引用:
彭国俊, 傅仙发. 显式计算Z2对称系统的Hopf和Bautin分岔[J]. 应用数学进展, 2014, 3(2): 54-61. http://dx.doi.org/10.12677/AAM.2014.32009

参考文献

[1] Guckenheimer, J. and Holmes, P.J. (1983) Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, New York.
[2] Chow, S.N., Li, C.Z. and Wang, D. (1994) Normal forms and bifurcation of planar vector fields. Cambridge University Press, Cambridge.
[3] Kuznetsov, Yu.A. (2004) Elements of applied bifurcation theory. 3rd Edition, Springer, New York.
[4] Hassard, B., Kazarinoff, N. and Wan, Y.H. (1981) Theory and applications of Hopf bifurcation. Cambridge University Press, London.
[5] Kuznetsov, Yu.A. (1999) Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODEs. SIAM Journal on Numerical Analysis, 36, 1104-1124.
[6] Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V. and Chua, L. (2001) Methods of qualitative theory in nonlinear dynam- ics. World Scientific, Singapore.
[7] Peng, G.J. and Jiang, Y.L. (2013) Computation of universal unfolding of the double-zero bifurcation in -symmetric systems by a homological method. Journal of Difference Equations and Applications, 19, 1501-1512.
[8] Freire, E., Rodríguez-Luis, A.J., Gamero, E. and Ponce, E. (1993) A case study for homoclinic chaos in an autonomous electronic circuit. A trip from Takens-Bogdanov to Hopf-Šil’nikov. Physica D, 62, 230-253.