AAM  >> Vol. 3 No. 2 (May 2014)

    复Hamilton矩阵的特征值问题
    The Eigenvalues Problem for Complex Hamilton Matrix

  • 全文下载: PDF(390KB) HTML    PP.78-84   DOI: 10.12677/AAM.2014.32012  
  • 下载量: 2,100  浏览量: 9,184   国家自然科学基金支持

作者:  

沈 玥,王智慧,闫 琨,吴德玉:内蒙古大学数学科学学院,呼和浩特

关键词:
特征值特征向量Hamilton矩阵Eigenvalue Eigenvector Hamilton Matrix

摘要:

在本文中,我们主要研究复Hamilton矩阵的特征值关于实轴和虚轴的对称性,以及复Hamilton矩阵的特征值是实的或纯虚数的充分条件。最后,通过证明得到一类特征值是关于实轴和虚轴对称的复Hamilton矩阵。

In this paper, we focus on the conditions under which the eigenvalues of complex Hamiltonian matrices are symmetric with respect to the real and imaginary axis, and the sufficient conditions that the eigenvalues of complex Hamiltonian matrices are the real or the pure imaginary number are obtained. In the end, a class of complex Hamiltonian matrices whose eigenvalues are symmetric with respect to the real and the imaginary axis are obtained.

文章引用:
沈玥, 王智慧, 闫琨, 吴德玉. 复Hamilton矩阵的特征值问题[J]. 应用数学进展, 2014, 3(2): 78-84. http://dx.doi.org/10.12677/AAM.2014.32012

参考文献

[1] Bunse-Gerstner, A., Byers, R. and Mehrmann, V. (1992) A chart of numerical methods for structured eigenvalue prob- lems. SIAM Journal on Matrix Analysis and Applications, 13, 419-453.
[2] Bunse-Gerstner, A. and Fabbender, H. (1997) A Jacobi-like method for solving algebraic Riccati equations on parallel computers. IEEE Transactions on Automatic Control, 42, 1071-1084.
[3] Mehrmann, V. (1991) The autonomous linear quadratic control problem: Theory and numerical solution, lecture notes in control and information sciences. Vol. 163, Springer, Berlin.
[4] Lancasyer, P. and Rodman, L. (1995) The algebraic Riccati equation. Oxford University Press, Oxford.
[5] Rosen, I. and Wang, C. (1992) A multilevel technique for the approximate solution of operator Lyapunov and algebraic Riccati equations. SIAM Journal on Matrix Analysis and Applications, 32, 514-541.
[6] Benner, P., Byers, R., Mehrmann, V. and Xu, H. (2002) Numerical computation of deflating sub-spaces of embedded Hamiltonian pencils. SIAM Journal on Matrix Analysis and Applications, 24, 160-190.
[7] Wu, D.Y. and Chen, A. (2011) Invertibility of nonnegative Hamiltonian operator with unbounded entries. Journal of Mathematical Analysis and Applications, 373, 410-413.
[8] Wu, D.Y. and Chen, A. (2011) Spectral inclusion properties of the numerical range in a space with an indefinite metric. Linear Algebra and Its Applications, 435, 1131-1136.