AMS  >> Vol. 1 No. 1 (September 2014)

    生物技术提高海洋生境药用放线菌代谢产物的研究
    The Research on Biotechnology Improving the Metabolic Product of Marine Habitat Medicinal Actinomycetes

  • 全文下载: PDF(404KB) HTML    PP.27-34   DOI: 10.12677/ams.2014.11005  
  • 下载量: 1,052  浏览量: 6,913   国家科技经费支持

作者:  

马湘君,史振平,张久明,田 黎:青岛科技大学,青岛

关键词:
放线菌药用化合物原生质融合基因技术Actinomycetes Protoplast Fusion Genetic Engineering Medicinal Antibiotics

摘要:

海洋生境放线菌可产生较特异的药用化合物,但通常量很少很难满足后续的研究要求,原生质体融合技术是改良放线菌菌株最常用的育种方法之一,本文结合相关研究进展,分析了影响放线菌原生质体制备和融合的因素,介绍了放线菌融合子的筛选方法及应用,并对如何利用融合及基因技术等方法提高放线菌药用抗生素的产量进行了评述。

Marine habitat actinomycetes can produce peculiar medicinal compounds, but the amount is not enough to meet the requirements of further study. Protoplast fusion technology is one of the most common methods of breeding to improve strains of actinomycetes. This article combined related progress, analyzed the factors that influenced the actinomycetes protoplast fusion, introduced the screening methods of actinomycetes fusants, and commented on the means as to how to use genetic engineering to increase the titer of actinomycetes medicinal antibiotics.

文章引用:
马湘君, 史振平, 张久明, 田黎. 生物技术提高海洋生境药用放线菌代谢产物的研究[J]. 海洋科学前沿, 2014, 1(1): 27-34. http://dx.doi.org/10.12677/ams.2014.11005

参考文献

[1] 殷瑜, 戈梅, 陈代杰 (2013) 新方法新技术与新型抗生素发现. 微生物学通报, 10, 1874-1884.
[2] Berdy, J. (2005) Bioactive microbial metabolites. The Journal of antibiotics, 58, 1-26.
[3] 李巧连, 李可, 谢明杰, 曹旭鹏 (2010) 海洋放线菌次级代谢产物及其活性研究进展. 中国海洋药物, 5, 57-65.
[4] Ferencezy, L., Kevei, F. and Zsolt, J. (1974) Fusion of fungal Protoplast. Nature, 248, 793-794.
[5] Pesti, M., Konszky, E. and Polga, J. (1979) Fifth International Protoplast Symposium, Willams and Wilkins, Baltimore, 54.
[6] 王春平, 韦强, 鲍国连, 等 (2008) 微生物原生质体融合技术研究进展. 动物医学进展, 29, 64-67.
[7] 张振鲁, 杜茜, 周幸, 等 (2013) 不吸水链霉菌公主岭变种769原生质体制备条件初探. 中国农学通报, 29, 155- 158.
[8] 毛雨, 王丹, 李强, 等 (2010) 产琥珀酸放线杆菌的原生质体制备与再生. 中国生物工程杂志, 30, 103-108.
[9] 张禹, 毛淑红, 路福平, 等 (2013) 原生质体融合技术选育分解草酸乳酸菌菌株的研究. 生物技术通报, 1, 186- 190.
[10] Luo, J.M., Li, J.S., Wang, Y.T., et al. (2009) Protoplast formation and regeneration conditions of Streptomyces gilvosporeus. Bioin-formatics and Biomedical Engineering.
[11] 李丽, 房杰, 黄洁洁, 付瑞燕 (2012) 单亲灭活德氏乳杆菌和乳酸乳球菌原生质体融合条件优化. 食品科学, 5, 193-198.
[12] 张欢, 张燕, 王立梅 (2012) 多亲本原生质体融合构建高产谷胱甘肽菌株. 食品科技, 11, 18-22.
[13] 曾洪梅, 张震霖, 石义萍, 林德炘 (1995) 原生质体融合提高农抗武夷菌素的效价. 微生物学报, 5, 375-380.
[14] Hopwood, D.A. (1989) Antibiotics: Opportunities for genetic ma-nipulation. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 324, 549-562.
[15] Ochi, K. and Hosaka, T. (2013) New strategies for drug discovery: Activation of silent or weakly expressed microbial gene clusters. Applied Microbiology and Biotechnology, 97, 87-98.
[16] 骆健美, 李建姝, 王艳婷, 王敏 (2008) 褐黄孢链霉菌双亲灭活原生质体融合的研究. 现代化工, S2, 49-53.
[17] 龙建友, 唐世荣, 吴文君 (2007) 原生质体融合技术对秦岭霉素产量提高的影响. 中国农业科学, 7, 1416-1421.
[18] 孙丽娟 (2007) 西罗莫司产生菌吸水链霉菌FC904-25与他克莫司产生菌链霉菌FCZ0311的原生质体融合. 福建医科大学, 福州.
[19] Balagurunathan, R., and Shanthi, J. (2012) New approaches for novel secondary metaboilites production from actinomycete. Journal of Pharmacy Research, 5, 434-438.
[20] 雷秀清, 李力, 黄建忠 (2014) 提高放线菌次级代谢产物产量方法的研究进展. 生物技术通报, 5, 45-51
[21] 郭鹏飞, 靳艳, 张海涛, 虞星炬, 张卫 (2006) 共培养海绵微生物诱导抗菌活性物质的研究. 微生物学通报, 1, 33-37.
[22] Vogel, J. (2014) A bacterial seek-and-destroy system for foreign DNA. Science, 344, 972-973
[23] 黄兵, 刘宁, 黄英, 陈劲春 (2009) 放线菌与枯草芽孢杆菌的共培养及其对活性次生代谢产物的影响. 生物工程学报, 6, 932-940
[24] Kurosawa, K., Ghiviriga, I., Sambandan, T.G., Lessard, P.A., Barbara, J.E., Rha, C., et al. (2008) Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. Journal of the American Chemical Society, 130, 1126-1127.
[25] Horinouchi, S. (2002) A microbial hormone, A-factor, as a master switch for morphological differen-tiation and secon- dary metabolism in Streptomyces griseus. Frontiers in Bioscience: A Journal and Virtual Library, 7, 2045-2057.
[26] Kitani, S., Doi, M., Shimizu, T., Maeda, A. and Nihira, T. (2010) Control of secondary metabolism by farX, which is involved in the γ-butyrolactone biosynthesis of Streptomyces lavendulae FRI-5. Archives of Microbiology, 192, 211- 220.
[27] Lee, Y.J., Kitani, S. and Nihira, T. (2010) Null mutation analysis of an afsA-family gene, barX, that is involved in bi- osynthesis of the γ-butyrolactone autoregulator in Streptomyces virginiae. Microbiology, 156, 206-210.
[28] van Wezel, G.P. and McDowall, K.J. (2011) The regulation of the secondary metabolism of Streptomyces: New links and experimental advances. Natural Product Reports, 28, 1311-1333.
[29] Perlova, O., Gerth, K., Kaiser, O., Hans, A. and Müller, R. (2006) Identication and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum Soce56. Journal of Biotechnology, 121, 174-191.
[30] Hung, T.V., Malla, S., Park, B.C., Liou, K., Lee, H.C. and Sohng, J.K. (2007) Enhancement of clavulanic acid by repli- cative and integrative expression of ccaR and cas2 in Streptomyces clavuligerus NRRL3585. Journal of Microbiology and Biotechnology, 17, 1538-1545.
[31] 芦银华, 姜卫红 (2013) 链霉菌次级代谢调控相关的双组分系统研究进展. 微生物学通报, 10, 1847-1859.
[32] Martín, J.F. and Liras, P. (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Current Opinion in Microbiology, 13, 263-273.
[33] Hu, B. and Lidstrom, M. (2012) CcrR, a TetR family transcriptional regulator, activates the transcription of a gene of the ethylmalonyl coenzyme A pathway in Methylobacterium extorquens AM1. Journal of Bacteriology, 194, 2802- 2828.
[34] 韩晓伟, 沈月毛 (2013) TetR家族调控链霉菌次级代谢的机制. 微生物学通报, 10, 1831-1846.
[35] Yanai, K., Murakami, T. and Bibb, M. (2006) Amplication of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proceedings of the National Academy of Sciences of the United States of America, 103, 9661-9666.
[36] Eustáquio, A.S., Gust, B., Galm, U., Galm, U., Li, S.M., Chater, K.F., et al. (2005) Heterologous expression of novobi- ocin and clorobiocin biosynthetic gene clusters. Applied and Environmental Microbiology, 71, 2452-2459.
[37] 蔡成平, 王远山, 郑裕国 (2012) 核糖体工程与微生物次级代谢产物合成. 生物技术通报, 9, 51-58.
[38] Ochi, K., Okamoto, S., Tozawa, Y., Inaoka, T., Hosaka, T., Xu, J., et al. (2004) Ribosome engineering and secondary metabolite production. Advances in Applied Microbiology, 56, 155-184.
[39] Ochi, K. (2007) From microbial differentiation to ribosome engineering. Bioscience, Biotechnology, and Biochemistry, 71, 1373-1386.
[40] Baltz, R. (2012) Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomy- cetes (and other organisms). Journal of Industrial Microbiology & Biotechnology, 39, 661-672.
[41] Inaoka, T. and Ochi, K. (2011) Activation of dormant secondary metabolism neotrehalosadiamine synthesis by an RNA polymerase mutation in Bacillus subtilis. Bioscience, Biotechnology, and Biochemistry, 75, 618-623.
[42] Olkkola, S., Juntunen, P., Heiska, H., Hyytiäinen, H. and Hänninen, M.L. (2010) Mutations in the rpsL gene are involved in streptomycin resistance in Campylobacter coli. Microbial Drug Resistance, 16, 105-110.
[43] 韩小贤, 崔承彬, 姚志伟, 杨明 (2010) 陆地与海洋来源放线菌次级代谢能力的核糖体工程改造. 中国海洋大学学报, 5, 47-52.