AAM  >> Vol. 3 No. 4 (November 2014)

    具有非线性扰动的时变时滞中立型系统的稳定性分析
    Stability Analysis for Neutral System with Time-Varying Delays and Nonlinear Perturbations

  • 全文下载: PDF(313KB) HTML    PP.169-176   DOI: 10.12677/AAM.2014.34025  
  • 下载量: 1,210  浏览量: 3,855  

作者:  

李 欣,章春国,周阿敏:杭州电子科技大学,数学系,杭州

关键词:
非线性扰动Lyapunov-Krasovskii泛函稳定性分析LMI不等式Nonlinear Perturbation Lyapunov-Krasovskii Functional Stability Analysis Linear Matrix Inequality (LMI)

摘要:

本文研究具有非线性扰动的时变时滞中立性系统的稳定性。通过选取合适的Lyapunov-Krasovskii泛函,应用LMI不等式和Lyapunov-Krasovskii稳定性定理对时滞相关的非线性扰动系统进行稳定性分析。

This paper studies the stability of neutral system with time-varying delays and nonlinear pertur-bations. The stability of the system with time-varying delays and nonlinear perturbations is ana-lysed by choosing a proper Lyapunov-Krasovskii functional, applying the Linear Matrix Inequality (LMI), and using the Lyapunov-Krasovskii stabilization theorem.

文章引用:
李欣, 章春国, 周阿敏. 具有非线性扰动的时变时滞中立型系统的稳定性分析[J]. 应用数学进展, 2014, 3(4): 169-176. http://dx.doi.org/10.12677/AAM.2014.34025

参考文献

[1] Wu, M., He, Y. and She, J.H. (2004) New delay-dependent stability criteria and stabilizing method for neutral systems. IEEE Transactions on Automatic Control, 49, 2266-2271.
[2] Fang, T. and Sun. J.T. (2013) Stability analysis of complex-valued nonlinear delay differential systems. IEEE Transactions on Automatic Control, 62, 910-914.
[3] Chen, Y., Xue, A.K., Lu, R.Q. and Zhou, S.S. (2008) On robustly exponential stability of uncertain neutral systems with time-varying delays and nonlinear perturbations. Nonlinear Analysis, 68, 2464-2470.
[4] 李宏飞, 罗学波 (2004) 具有非线性扰动的中立型系统的鲁棒稳定性. 西南师范大学学报(自然科学学报), 4, 539-545.
[5] Rakkiyappan, R., Balasubramaniam, P. and Krishnasamy, P. (2011) Delay dependent stability analysis of neutral systems with mixed time-varying delays and nonlinear perturbations. Journal of Computational and Applied Mathematics, 235, 2147-2156.
[6] Qiu, F., Cui, B. and Ji, Y. (2010) Further results on robust stability of neutral system with mixed time-varying delays and nonlinear perturbations. Nonlinear Analysis: Real World Applications, 11, 895-890.
[7] Amjadifard, R., Beheshti, M.T.H. and Yazdanpanah, M.J. (2011) Robust stabilization for a class of nonlinear singularly perturbed systems. Journal of Dynamic Systems, Measurement and Control, 133, 1-5.
[8] 俞立 (2002) 鲁棒控制: 线性矩阵不等式处理方法. 清华大学出版社, 北京.
[9] He, Y., Wu, M., She, J.H. and Liu, G.P. (2004) Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. Systems & Control Letters, 51, 57-65.