AMC  >> Vol. 2 No. 4 (December 2014)

    二硫化钼纳米片的研究进展
    Research Progress of MoS2 Nanosheets

  • 全文下载: PDF(2158KB) HTML   XML   PP.49-62   DOI: 10.12677/AMC.2014.24008  
  • 下载量: 2,757  浏览量: 28,862   科研立项经费支持

作者:  

王轩,宋礼,陈露,宋欢欢,张永平:西南大学材料与能源学部,重庆

关键词:
MoS2 纳米片光电性质光电子器件
Molybdenum Disulfide (MoS2)
Nanosheets Optical Property Electrical Property Optoelectronic Devices

摘要:
近年来,由于二硫化钼(MoS2)纳米片具有优异的半导体性能,有可能成为硅的替代者而引起了纳米电子学领域的广泛关注。本文评述了几种制备MoS2纳米片的方法,介绍了MoS2纳米片的表征方法和光电性质,总结了MoS2纳米片在几种光电子器件上的应用,并对MoS2纳米片的发展趋势作了展望。

 In recent years, molybdenum disulfide (MoS2) nanosheets have attracted extensive interest in the field of nanoscale electronics and are likely to be an alternative choice for silicon because of its excellent semiconductor performance. In this paper, we review the several methods for preparing MoS2 nanosheets and discuss its optical and electrical properties and other characteristics of the MoS2 nanosheets. The application of MoS2 nanosheets in various optoelectronic devices is introduced. Finally, we also prospect the future development trend about the investigation of MoS2 nanosheets.

文章引用:
王轩, 宋礼, 陈露, 宋欢欢, 张永平. 二硫化钼纳米片的研究进展[J]. 材料化学前沿, 2014, 2(4): 49-62. http://dx.doi.org/10.12677/AMC.2014.24008

参考文献

[1] Schulz, M. (1999) The end of the road for silicon? Nature, 399, 729-730.
[2] Iwai, H. and Ohmi, S. (2002) Silicon integrated circuit technology from past to future. Microelectronics Reliability, 42, 465-491.
[3] Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H.Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., Mccomb, D.W., Nellist, P.D. and Nicolosi, V. (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331, 568-571.
[4] Kim, H.W., Yoon, H.W., Yoon, S.M., Byung, M.Y., Ahn, B.K., Cho, Y.H., Shin, H.J., Yang, H., Paik, U., Kwon, S., Choi, J.Y. and Park, H.B. (2013) Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 342, 91-95.
[5] Park, J.Y., Kwon, S. and Kim, J.H. (2014) Nanomechanical and charge transport properties of two-dimensional atomic sheets. Advanced Materials Interfaces, 1, 1300089.
[6] Lee, C., Li, Q.Y., Kalb, W., Liu, X.Z., Berger, H., Carpick, R.W. and Hone, J. (2010) Frictional characteristics of atomically thin sheets. Science, 328, 76-80.
[7] Elias, D.C., Gorbachev, R.V., Mayorov, A.S., Morozov, S.V., Zhukov, A.A., Blake, P., Ponomarenko, L.A., Grigorieva, I.V., Novoselov, K.S., Guinea, F. and Geim, A.K. (2011) Dirac cones reshaped by interaction effects in suspended graphene. Nature Physics, 7, 701-704.
[8] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. and Firsov, A.A. (2005) Two-dimensional gas of massless diracfermions ingraphene. Nature, 438, 197-200.
[9] Pacilé, D., Meyer, J.C., Girit, Ç.Ö. and Zettl, A. (2008) The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Applied Physics Letters, 92, Article ID: 133107.
[10] Cunningham, G., Lotya, M., Cucinotta, C.S., Sanvito, S., Bergin, S.D., Menzel, R., Shaffer, M.S.P. and Coleman, J.N. (2012) Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano, 6, 3468-3480.
[11] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Kis, A. (2011) Single-layer MoS2 transistors. Nature Nanotechnology, 6, 147-150.
[12] Bromley, R.A., Murray, R.B. and Yoffe, A.D. (1972) The band structures of some transition metal dichalcogenides. III. Group VIA: Trigonal prism materials. Journal of Physical Chemistry: Solid State Physics, 5, 759.
[13] Kuc, A., Zibouche, N. and Heine, T. (2011) Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Physical Review B, 83, Article ID: 245213.
[14] Kan, M., Wang, J.Y., Li, X.W., Zhang, S.H., Li, Y.W., Kawazoe, Y., Sun, Q. and Jena, P. (2014) Structures and phase transition of a MoS2 monolayer. The Journal of Physical Chemistry C, 118, 1515-1522.
[15] Mattheiss, L.F. (1973) Band structures of transition-metal-dichalcogenide layer compounds. Physical Review B, 8, 3719-3740.
[16] Huang, K.J., Wang, L., Liu, Y.J., Wang, H.B., Liu, Y.M. and Wang, L.L. (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochimica Acta, 109, 587-594.
[17] Chen, W., Santos, E.J.G., Zhu, W.G., Kaxiras, E. and Zhang, Z.Y. (2013) Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. Nano Letters, 13, 509-514.
[18] Doolen, R., Laitinen, R., Parsapour, F. and Kelley, D.F. (1988) Trap state dynamics in MoS2 nanoclusters. The Journal of Physical Chemistry B, 102, 3906-3911.
[19] Ma, G.F., Peng, H., Mu, J.J., Huang, H.H., Zhou, X.Z. and Lei, Z.Q. (2013) In situ intercalative polymerization of pyrrole in grapheme analogue of MoS2 as advanced electrode material in supercapacitor. Journal of Power Sources, 229, 72-78.
[20] Lee, C.G., Yan, H., Brus, L.E., Heinz, T.F., Hone, J. and Ryu, S. (2010) Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 4, 2695-2700.
[21] Fu, Y.D., Feng, X.X., Yan, M.Y., Wang, K. and Wang, S.Y. (2013) First principle study on electronic structure and optical phonon properties of 2H-MoS2. Physica B, 426, 103-107.
[22] McCain, M.N., He, B., Sanati, J., Wang, Q.J. and Marks, T.J. (2008) Aerosol-assisted chemical vapor deposition of lubricating MoS2 films. Ferrous substrates and titanium film doping. Chemistry of Materials, 20, 5438-5443.
[23] Garadkar, K.M., Patil, A.A., Hankare, P.P., Chate, P.A., Sathe, D.J. and Delekar, S.D. (2009) MoS2: Preparation and their characterization. Journal of Alloys and Compounds, 487, 786-789.
[24] Zhao, J., Zhang, Z.C., Yang, S.S., Zheng, H.L. and Li, Y.B. (2013) Facile synthesis of MoS2 nanosheet-silver nanoparticles composite for surface enhanced Raman scattering and electrochemical activity. Journal of Alloys and Compounds, 559, 87-91.
[25] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric field effect in atomically thin carbon films. Science, 306, 666-669.
[26] Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., Lopes dos Santos, J.M.B., Nilsson, J., Guinea, F., Geim, A.K. and Castro Neto, A.H. (2007) Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Physical Review Letters, 99, Article ID: 216802.
[27] Lemme, M.C., Echtermeyer, T.J., Baus, M. and Kurz, H. (2007) A grapheme field-effect device. IEEE Electron Device Letters, 28, 282-284.
[28] Zhang, Y.B., Tang, T.T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R. and Wang, F. (2009) Direct observation of a widely tunable band gap in bilayer graphene. Nature, 459, 820-823.
[29] Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novnselov, K.S., Watanabe, K., Taniguchi, T. and Geim, A.K. (2011) Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters, 11, 2396-2399.
[30] Lee, J., Ha, T.J., Parrish, K.N., Chowdhury, Sk.F., Tao, L., Dodabalapur, A. and Akinwande, D. (2013) High performance current saturating graphene field-effect transistor with hexagonal boron nitride dielectric on flexible polymeric substrates. IEEE Electron Device Letters, 34, 172-174.
[31] Mak, K.F., Lee, C.G., Hone, J., Shan, J. and Heinz, T.F. (2010) Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters, 105, Article ID: 136805.
[32] Splendiani, A., Sun, L., Zhang, Y.B., Li, T.S., Kim, J., Chim, C.Y., Galli, G. and Wang, F. (2010) Emerging photoluminescence in monolayer MoS2. Nano Letters, 10, 1271-1275.
[33] Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M.W. and Chhowalla, M. (2011) Photoluminescence from chemically exfoliated MoS2. Nano Letters, 11, 5111-5116.
[34] Radisavljevic, B., Whitwick, M.B. and Kis, A. (2011) Integrated circuits and logic operations based on single-layer MoS2. ACS Nano, 5, 9934-9938.
[35] Yin, Z.Y., Li, H., Jiang, L., Shi, Y.M., Sun, Y.H., Lu, G., Zhang, Q., Chen, X.D. and Zhang, H. (2012) Single-layer MoS2 phototransistors. ACS Nano, 6, 74-80.
[36] He, Q.Y., Zeng, Z.Y., Yin, Z.Y., Li, H., Wu, S.X., Huang, X. and Zhang, H. (2012) Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small, 8, 2994-2999.
[37] Liu, J.Q., Zeng, Z.Y., Cao, X.H., Lu, G., Wang, L.H., Fan, Q.L., Huang, W. and Zhang, H. (2012) Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small, 8, 3517-3522.
[38] Wang, H., Yu, L.L., Lee, Y.H., Shi, Y.M., Hsu, A., Chin, M.L., Li, L.J., Dubey, M., Kong, J. and Palacios, T. (2012) Integrated circuits based on bilayer MoS2 transistors. Nano Letters, 12, 4674-4680.
[39] Pu, J., Yomogida, Y., Liu, K.K., Li, L.J., Twasa, Y. and Takenobu, T. (2012) Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Letters, 12, 4013-4017.
[40] Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V. and Geim, A.K. (2005) Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451-10453.
[41] Zhang, Y.J., Ye, J.T., Yomogida, Y., Takenobu, T. and Iwasa, Y. (2013) Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. Nano Letters, 13, 3023-3028.
[42] Salvatore, G.A., Münzenrieder, N., Barraud, C., Petti, L., Zysset, C., Büthe, L., Ensslin, K. and TrÖster, G. (2013) Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. ACS Nano, 7, 8809- 8815.
[43] Lopez-Sanchez, O., Liado, E.A., Koman, V., Morral, A.F., Radenovic, A. and Kis, A. (2014) Light generation and harvesting in a van der Waals Heterostructure. ACS Nano, 8, 3042-3048.
[44] Smith, R.J., King, P.J., Lotya, M., Wirtz, C., Khan, U., De, S., O’Neill, A., Duesberg, G.S., Grunlan, J.C., Moriarty, G., Chen, J., Wang, J.Z., Minett, A.I., Nicolosi, V. and Coleman, J.N. (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Advanced Materials, 23, 3944-3948.
[45] Qin, X.P., Ke, P.L., Wang, A.Y. and Kim, K.H. (2013) Microstructure, mechanical and tribological behaviors of MoS2-Ti composite coatings deposited by a hybrid HIPIMS method. Surface and Coatings Technology, 228, 275-281.
[46] Zeng, Z.Y., Yin, Z.Y., Huang, X., Li, H., He, Q.Y., Lu, G., Boey, F. and Zhang, H. (2011) Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angewandte Chemie International Edition, 50, 11093- 11097.
[47] Liu, K.K., Zhang, W.J., Lee, Y.H., Lin, Y.C., Chang, M.T., Su, C.Y., Chang, C.S., Li, H., Shi, Y.M., Zhang, H., Lai, C.S. and Li, L.J. (2012) Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Letters, 12, 1538-1544.
[48] Ye, L.J., Xu, H.Y., Zhang, D.K. and Chen, S.J. (2014) Synthesis of bilayer MoS2 nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity. Materials Research Bulletin, 55, 221-228.
[49] Liu, H., Si, M.W., Najmaei, S., Neal, A.T., Du, Y.C., Ajayan, P.M., Lou, J. and Ye, P.D. (2013) Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Letters, 13, 2640-2646.
[50] Wang, X.S., Feng, H.B., Wu, Y.M. and Jiao, L.Y. (2013) Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. Journal of the American Chemical Society, 135, 5304-5307.
[51] Zhan, Y.J., Liu, Z., Najmaei, S., Ajayan, P.M. and Lou, J. (2012) Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small, 8, 966-971.
[52] Yu, Y.F., Li, C., Liu, Y., Zhang, Y. and Cao, L.Y. (2013) Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Scientific Reports, 3, Article Number: 1866.
[53] Mann, J., Ma, Q., Odenthal, P.M., Isarraraz, M., Le, D., Preciado, E., Barroso, D., Yamaguchi, K., Palacio, G.V.S., Nguyen, D., Tran, T., Wurch, M., Nguyen, A., Klee, V., Bobek, S., Sun, D., Heinz, T.F., Rahman, T.S., Kawakami, R. and Bartels, L. (2014) 2-Dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1–x)Se2x monolayers. Advanced Materials, 26, 1399-1404.
[54] Ling, X., Lee, Y.H., Lin, Y.X., Fang, W.J., Yu, L.L., Dresselhaus, M.S. and Kong, J. (2014) Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Letters, 14, 464-472.
[55] Lee, Y.H., Yu, L.L., Wang, H., Fang, W.J., Ling, X., Shi, Y.M., Lin, C.T., Huang, J.K., Chang, M.T., Chang, C.S., Dresselhaus, M., Palacios, T., Li, L.J. and Kong, J. (2013) Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Letters, 13, 1852-1857.
[56] Shi, Y.M., Huang, J.K., Jin, L.M., Hsu, Y.T., Yu, S.F., Li, L.J. and Yang, H.Y. (2013) Selective decoration of Aunanop articles on monolayer MoS2 single crystals. Scientific Reports, 3, Article Number: 1839.
[57] Li, H., Wu, J., Huang, X., Lu, G., Yang, J., Lu, X., Xiong, Q.H. and Zhang, H. (2013) Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano, 7, 10344-10353.
[58] Cheiwchanchamnangij, T. and Lambrecht, W.R.L. (2012) Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Physical Review B, 85, Article ID: 205302.
[59] Li, H., Yin, Z.Y., He, Q.Y., Li, H., Huang, X., Lu, G., Fam, D.W.H., Tok, A.L.Y., Zhang, Q. and Zhang, H. (2012) Fabrication of single- and multi-layer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small, 1, 63-67.
[60] Li, T.S. and Galli, G. (2007) Electronic properties of MoS2 nanoparticles. Journal of Physical Chemistry C, 111, 16192-16196.
[61] Ayari, A., Cobas, E., Ogundadegbe, O. and Fuhrer, M.S. (2007) Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. Journal of Applied Physics, 101, Article ID: 014507.
[62] Lee, Y.H., Zhang, X.Q., Zhang, W.J., Chang, M.T., Lin, C.T., Chang, K.D., Yu, Y.C., Wang, J.T.W., Chang, C.S., Li, L.J. and Lin, T.W. (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 24, 2320-2325.
[63] Shah, P.B., Amani, M., Chin, M.L., O’Regan, T.P., Crowne, F.J. and Dubey, M. (2014) Analysis of temperature dependent hysteresis in MoS2 field effect transistors for high frequency applications. Solid-State Electronics, 91, 87-90.
[64] Tsai, D.S., Liu, K.K., Lien, D.H., Tsai, M.L., Kang, C.F., Lin, C.A., Li, L.J. and He, J.H. (2013) Few-layer MoS2 with high broad band photogain and fast optical switching for use in harsh environments. ACS Nano, 7, 3905-3911.
[65] Zhang, W.J., Chuu, C.P., Huang, J.K., Chen, C.H., Tsai, M.L., Chang, Y.H., Liang, C.T., Chen, Y.Z., Chueh, Y.L., He, J.H., Chou, M.Y. and Li, L.J. (2014) Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Scientific Reports, 4, 3826.
[66] Lin, Y.C., Lu, N., Lopez, N.P., Li, J., Lin, Z., Peng, X., Lee, C.H., Sun, C., Calderin, L., Browning, P.N., Bresnehan, M.S., Kim, M.J., Mayer, T.S., Terrones, M. and Robinson, J.A. (2014) Direct synthesis of van der Waals solids. ACS Nano, 8, 3715-3723.
[67] Perkins, F.K., Friedman, A.L., Cobas, E., Campbell, P.M., Jernigan, G.G. and Jonker, B.T. (2013) Chemical vapor sensing with monolayer MoS2. Nano Letters, 13, 668-673.
[68] Late, D.J., Huang, Y.K., Liu, B., Acharya, J., Shirodkar, S.N., Luo, J.J., Yan, A.M., Charles, D., Waghmare, U.V., Dravid, V.P. and Rao, C.N.R. (2013) Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano, 7, 4879-4891.
[69] Haering, R.R., Stiles, J.A.R. and Brandt, K. (1980) Lithium molybdenum disulphide battery cathode. US Patent No. 4224390.
[70] Du, G.D., Guo, Z.P., Wang, S.Q., Zeng, R., Chen, Z.X. and Liu, H.K. (2010) Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chemical Communications, 46, 1106- 1108.
[71] Chang, K. and Chen, W.X. (2011) L-cysteine-assisted synthesis of layered MoS2/grapheme composites with excellent electrochemical performances for lithium ion batteries. ACS Nano, 5, 4720-4728.
[72] Bang, G.S., Nam, K.W., Kim, J.Y., Shin, J., Choi, J.K. and Choi, S.Y. (2014) Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Applied Materials Interfaces, 6, 7084-7089.
[73] David, L., Bhandavat, R. and Singh, G. (2014) MoS2/grapheme composite paper for sodium-ion battery electrodes. ACS Nano, 8, 1759-1770.
[74] Shanmugan, M., Durcan, C.A. and Yu, B. (2012) Layered semiconductor molybdenum disulfide nanomembrane based Schottky-barrier solar cells. Nanoscale, 4, 7399.
[75] Gu, X., Cui, W., Li, H., Wu, Z.W., Zeng, Z.Y., Lee, S.T., Zhang, H. and Sun, B.Q. (2013) A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells. Advanced Energy Materials, 3, 1262-1268.
[76] Tsai, M.L., Su, S.H., Chang, J.K., Tsai, D.S., Chen, C.H., Wu, C.I., Li, L.J., Chen, L.J. and He, J.H. (2014) Monolayer MoS2 hetero junction solar cells. ACS Nano, 8, 8317-8322.