AAM  >> Vol. 4 No. 2 (May 2015)

    状态时滞的离散线性系统的能控性分析
    Controllability of Linear Discrete-Time Systems with Time-Delay in State

  • 全文下载: PDF(315KB) HTML   XML   PP.83-89   DOI: 10.12677/AAM.2015.42011  
  • 下载量: 818  浏览量: 3,925   国家自然科学基金支持

作者:  

张娟娟,高彩霞:内蒙古大学数学科学学院,内蒙古 呼和浩特

关键词:
能控性状态时滞离散线性系统基于数据的方法Controllability Time-Delay in State Linear Discrete-Time System Data-Based Method

摘要:

本文使用一种基于数据的方法来分析状态时滞的离散线性系统的能控性,利用这种方法,不需要识别系统的参数,就可以通过测量数据,构造一个能控矩阵来分析系统的能控性。因此在实践中,就可以节省时间并且避免相应的识别错误,对确定系统特性的研究也是可行的。

In this paper, a data-based method is used to analyze the controllability of linear discrete-time systems with time-delay in state. By this method, one can directly construct a controllability matrix using the measured state data without identifying system parameters. Hence, one can save time in practice and avoid corresponding identification errors. Moreover, it is feasible to the study of characteristics of deterministic systems.

文章引用:
张娟娟, 高彩霞. 状态时滞的离散线性系统的能控性分析[J]. 应用数学进展, 2015, 4(2): 83-89. http://dx.doi.org/10.12677/AAM.2015.42011

参考文献

[1] Klamka, J. (1977) Absolute controllability of linear systems with time-variable delays in control. International Journal of Control, 26, 57-63.
[2] Jakubczyk, B. and Sontag, E. (1990) Controllability of nonlinear discrete-time systems: A lie-algebraic approach. SIAM Journal on Control and Optimization, 28, 1-33.
[3] Zhao, S. and Sun, J. (2009) Con-trollability and observability for a class of time-varying impulsive systems. Nonlinear Analysis: Real World Applications, 10, 1370-1380.
[4] Liu, Y. and Zhao, S. (2011) Controllability for a class of linear time-varying impulsive systems with time delay in control input. IEEE Transactions on Automatic Control, 56, 395-399.
[5] Murthy, D. (1986) Controllability of a linear positive dynamic system. International Journal of Systems Science, 17, 49-54.
[6] Rumchev, V. and James, D. (1989) Controllability of positive linear discrete-time systems. International Journal of Control, 50, 845-857.
[7] Fanti, M., Maione, B. and Turchiano, B. (1990) Controllability of multi-input positive discrete-time systems. International Journal of Control, 51, 1295-1308.
[8] Valcher, M. (1996) Controllability and reachability criteria for discrete time positive systems. International Journal of Control, 65, 511-536.
[9] Phat, V. (1989) Controllability of discrete-time systems with multiple delays on controls and states. International Journal of Control, 49, 1645-1654.
[10] Liu, Y. and Fong, I. (2012) On the controllability and observability of discrete-time linear time-delay systems. International Journal of Systems Science, 43, 610-621.
[11] Yang, P., Xie, G. and Wang, L. (1999) Controllability of linear discrete-time systems with time-delay in state. http://dean.pku.edu.cn/bksky/1999tzlwj/5.pdf
[12] Wang, Z. and Liu, D. (2011) Data-based controllability and obser-vability analysis of linear discrete-time systems. IEEE Transactions on Neural Networks, 22, 2388-2392.