AAM  >> Vol. 4 No. 2 (May 2015)

    基于几何分数布朗运动的溢额再保险存款保险定价
    Deposit Insurance Pricing of Excess Reinsurance Based on Geometric Fractional Brownian Motion

  • 全文下载: PDF(346KB) HTML   XML   PP.90-95   DOI: 10.12677/AAM.2015.42012  
  • 下载量: 1,017  浏览量: 4,865   科研立项经费支持

作者:  

刘海梅,赵明清:山东科技大学数学与系统科学学院,山东 青岛

关键词:
存款保险定价几何分数布朗运动溢额再保险Deposit Insurance Pricing Geometric Fractional Brownian Motion Excess Reinsurance

摘要:

在假定银行资产服从几何分数布朗运动的前提下,建立了溢额再保险存款保险定价模型,并利用保险精算方法推导出存款保险定价公式。最后选取了我国四大国有银行进行了实证分析,结果表明存款保险费率与银行资产波动率呈现一定的正相关性,且再保险费率均低于原保险费率。因此,所建立的基于几何分数布朗运动的溢额再保险的存款保险定价模型更能反映实际。

Under the assumption of bank assets subject to geometric fractional Brownian motion, the deposit insurance pricing model of excess reinsurance is established. And the deposit insurance pricing formula is derived with actuarial methods. Finally, China’s four major state-owned banks’ empirical analysis shows that the deposit insurance rates and the volatility of bank assets showed some positive correlation, and the reinsurance premium rates were lower than the original. Therefore, the established deposit insurance pricing model of excess reinsurance based on geometric frac-tional Brownian motion is better to reflect reality.

文章引用:
刘海梅, 赵明清. 基于几何分数布朗运动的溢额再保险存款保险定价[J]. 应用数学进展, 2015, 4(2): 90-95. http://dx.doi.org/10.12677/AAM.2015.42012

参考文献

[1] Merton, R.C. (1997) An analytic derivation of the cost of deposit insurance and loan guarantee. Journal of Banking and Finance, 35, 3-11.
[2] Marcus, A.J. and Shaked, I. (1984) The valuation of FDIC deposit insurance using op-tion-pricing estimates. Journal of Money, Credit and Banking, 11, 446-460.
[3] Ronn, E.I. and Verma, A.L. (1986) Pricing risk-adjusted deposit insurance: An option-based model. Journal of Finance, 41, 871-895.
[4] 张亚涛 (2003) 存款保险定价模型之探究. 国际金融研究, 11, 35-38.
[5] 张金宝, 任若恩 (2006) 监管宽容条件下的存款保险定价研究. 山西财经大学学报, 2, 95-98.
[6] 林略, 展雷艳 (2010) 基于Merton模型的存款保险定价研究. 技术经济, 3, 86-88.
[7] 姜兴坤, 孙健, 等 (2013) 引入所得税的Merton模型存款保险定价研究. 统计与信息论坛, 3, 22-27.
[8] 李施荔 (2012) 分数布朗运动下的期权定价问题研究. 硕士论文, 哈尔滨工程大学, 哈尔滨, 3-19.
[9] Bladt, M. and Rydberg, T.H. (1998) An actuarial approach to option pricing under the physical measure and without market assumptions. Insurance: Mathematics and Economics, 22, 65-73.
[10] 闫海峰, 刘三阳 (2003) 广义Black-Scholes模型期权定价新方法——保险精算方法. 应用数学与力学, 7, 30-738.
[11] 钱丽丽 (2007) 期权定价问题的保险精算方法研究. 硕士论文, 华东师范大学, 上海.
[12] 高军 (2012) 考虑再保险的存款保险定价及其应用. 金融天地, 10, 216-217.
[13] 王雪梅 (2012) 对超额赔款再保险定价问题的探讨. 硕士论文, 西南财经大学, 成都.
[14] 谭朵朵, 田伟, 罗洪奔 (2005) 溢额再保险定价模型. 经济数学, 10, 127-131.
[15] 李秀华 (2007) 基于投资的再保险定价模型研究. 五邑大学学报, 4, 57-61.
[16] 荣喜民, 张世英 (2001) 再保险定价的应用. 系统工程学报, 6, 471-480.
[17] 张波, 商豪 (2013) 应用随机过程. 中国人民大学出版社, 北京, 155-170.