AAM  >> Vol. 4 No. 2 (May 2015)

    椭圆及热传导界面问题浸入界面方法的研究
    Immersed Interface Method for Elliptic Interface and Heat Conduction Problem

  • 全文下载: PDF(510KB) HTML   XML   PP.136-149   DOI: 10.12677/AAM.2015.42019  
  • 下载量: 883  浏览量: 2,752   科研立项经费支持

作者:  

张利平,赵建平,张 帅:新疆大学数学与系统科学学院,新疆 乌鲁木齐

关键词:
椭圆界面问题泰勒展开式一致网格剖分热传导界面问题Elliptic Interface Problem Taylor Expansion Consistent Grid Subdivision Heat Transfer Interface Problem

摘要:

界面问题的研究具有重要的应用背景。本文从简单的模型出发,改进了浸入界面方法的构造格式.着重讨论界面及附加区域的求解。选取一维椭圆和热传导界面模型问题,采用改进的浸入界面方法求解。最后通过数值算例,利用MATLAB编程验证了格式的有效性和可行性。并且可以进一步推广应用到更复杂的界面问题模型。

The study of interface problems has important application background. In this paper immersed interface method is improved, and especially the difficulty about the interface and the area near the interface is discussed. We use this method for solving the one-dimensional elliptic and heat equation. At last based on MATLAB, we give some numerical experiments in order to show the correctness and efficiency of the scheme. The modified immersed interface method can be used for more complicated interface problems.

文章引用:
张利平, 赵建平, 张帅. 椭圆及热传导界面问题浸入界面方法的研究[J]. 应用数学进展, 2015, 4(2): 136-149. http://dx.doi.org/10.12677/AAM.2015.42019

参考文献

[1] Leveque, R.J. and Li, Z. (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM Journal on Numerical Analysis, 31, 1019-1044.
[2] Lee, L. (2002) Immersed interface method for incompressible flow with moving interface. University of Washington, Washington DC.
[3] 陆金甫, 关治 (2005) 偏微分方程数值解法(第2 版). 清华大学出版社, 北京.
[4] Zhao, J.P., Hou, Y.R. and Li, Y.F. (2012) Immersed interface method for elliptic equations based on a piecewise second order polynomial. Computers and Mathematics with Applications, 63, 957-965.
[5] 李庆扬, 王能超, 等 (2005) 数值分析. 清华大学出版社, 北京.
[6] 赵建平 (2013) 椭圆界面问题若干数值方法的研究. 西安交通大学, 西安.