AMC  >> Vol. 3 No. 2 (April 2015)

    石墨相氮化碳纳米片的研究进展
    Research Development on Graphitic Carbon Nitride Nanosheets

  • 全文下载: PDF(820KB) HTML   XML   PP.13-23   DOI: 10.12677/AMC.2015.32003  
  • 下载量: 1,511  浏览量: 12,718   科研立项经费支持

作者:  

陈 露,王 轩,宋 礼,宋欢欢,张永平:西南大学材料与能源学部,重庆

关键词:
g-C3N4纳米片光电性质可见光催化剂g-C3N4 Nanosheets Photoelectric Properties Visible-Light-Driven Photocatalyst

摘要:

二维层状纳米材料由于具有独特的结构和优异性能吸引人们进行科学理论和实际应用方面的探索。石墨相氮化碳(g-C3N4)纳米片作为一种典型的层状材料,因其特殊的电子结构和优异的性能得到了能源、环境和生物等研究领域的广泛关注。材料制备、结构、性能及应用相互关联和影响,本文试图对g-C3N4纳米片的制备方法,相应的结构及其光电性质进行评述,并对g-C3N4纳米片在储能材料、传感器和可见光催化剂等方面的应用作了简要介绍,最后展望g-C3N4纳米片研究的发展趋势。

Two-dimensional nanosheets have attracted extensive interests in searching breakthrough of scientific theory and practical application due to their unique structure and extraordinary property. Graphitic carbon nitride (g-C3N4) nanosheets, typical layered materials, have found application in the fields of energy, environment and biology because of its distinctive electronic structure and excellent properties. The fabrication, structure, property and application of materials are closely interrelated. In this paper, we review the fabricate methods, their corresponding structure and property of g-C3N4 nanosheets, and then highlight its applications as energy storage materials, sensors and visible-light-driven photocatalyst. Finally, we prospect the research and development trend of g-C3N4 nanosheets.

文章引用:
陈露, 王轩, 宋礼, 宋欢欢, 张永平. 石墨相氮化碳纳米片的研究进展[J]. 材料化学前沿, 2015, 3(2): 13-23. http://dx.doi.org/10.12677/AMC.2015.32003

参考文献

[1] Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V. and Geim, A.K. (2005) Two- dimensional atomic crystals. Proceedings of National Academy of Sciences of the United States of America, 102, 10451-10453.
[2] Osada, M. and Sasaki, T. (2009) Exfoliated oxide nanosheets: New solution to nanoelectronics. Journal of Materials Chemistry, 19, 2503-2511.
[3] Osada, M. and Sasaki, T. (2012) Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystalbuilding blocks. Advanced Materials, 24, 210-228.
[4] Wang, H.Q., Kalantar-Zadeh, K., Kis, A., Colemanet, J.N. and Strano, M.S. (2012) Electronicsand optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7, 699-712.
[5] Li, H., Wu, J., Yin, Z.Y. and Zhang, H. (2014) Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Accounts of Chemical Research, 47, 1067-1075.
[6] Peng, X., Peng, L.L., Wu, C.Z. and Xie, Y. (2014) Two dimensional nanomaterials for flexible supercapacitors. Chemical Society Reviews, 43, 3303-3323.
[7] Yang, S.D., Shen, C.M., Liang, Y.Y., Tong, H., He, W., Shi, X.Z., Zhang, X.G. and Gao, H.J. (2014) Graphenenanosheets-polypyrrolehybrid material as a highly active catalyst support for formic acid electro-oxidation. Nanoscale, 3, 3277-3284.
[8] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2014) Electric field effect in atomically thin carbon films. Science, 306, 666-669.
[9] Lemme, M.C., Echtermeyer, T.J., Baus, M. and Kurz, H. (2007) A graphenefield-effect device. IEEE Electron Device Letters, 28, 282-284.
[10] Zhang, Y.B., Tang, T.T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R. and Wang, F. (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459, 820-823.
[11] Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novnselov, K.S., Watanabe, K., Taniguchi, T. and Geim, A.K. (2011) Micrometer-scale ballistic transport in encapsulated grapheme at room temperature. Nano Letters, 11, 2396-2399.
[12] Lee, J., Ha, T.J., Parrish, K.N., Chowdhury, S.F., Li, T., Dodabalapur, A. and Akinwande, D. (2013) High-performance current saturating graphene field-effect transistor with hexagonal boron nitride dielectric on flexible polymeric substrates. IEEE Electron Device Letters, 34, 172-174.
[13] Son, J.S., Wen, X.D., Joo, J., Chae, J., Baek, S., Park, K., Kim, J.H., An, K., Yu, J.H., Kwon, S.G., Choi, S.H., Wang, Z.W., Kim, Y.W., Kuk, Y., Hoffmann, R. and Hyeon, T. (2009) Large scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angewandte Chemie, 121, 6993-6996.
[14] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Ais, K. (2011) Single-layer MoS2 transistors. Nature Nanotechnology, 6, 147-150.
[15] Bhandavat, R., David, L. and Singh, G. (2012) Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. The Journal of Physical Chemistry Letters, 3, 1523-1530.
[16] Wang, X.C., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K. and Antonietti, M. (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8, 76-80.
[17] Wang, X.C., Nishihara, Y., Lu, D., Antonietti, M. and Domen, K. (2009) Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. The Journal of Physical Chemistry C, 113, 4940- 4947.
[18] Zhang, J.S., Chen, X.F., Takanabe, K., Maeda, K., Domen, K., Epping, J.D., Fu, X.Z., Antonietti, M. and Wang, X.C. (2010) Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angewandte Chemie International Edition, 49, 441-444.
[19] Molina, B. and Sansores, L.E. (1999) Electronic structure of six phases of C3N4. Modern Physics Letters B, 13, 193- 201.
[20] Kroke, E., Sehwarz, M., Horath-Bordon, E., Kroll, P., Noll, B. and Norman, A.D. (2002) Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New Journal of Chemistry, 26, 508-512.
[21] Wang, X.C., Blexhert, S. and Antonietti, M. (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catalysis, 2, 1596-1606.
[22] Lin, Q.Y., Li, L., Liang, S.J., Liu, M.H., Bi, J.H. and Wu, L. (2015) Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Applied Catalysis B: Environmental, 163, 135-142.
[23] Niu, P., Zhang, L.L., Liu, G. and Cheng, H.M. (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Advanced Functional Materials, 22, 4763-4770.
[24] Chen, L.C., Huang, D.J., Ren, S.Y., Dong, T.Q., Chi, Y.W. and Chen, G.N. (2013) Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale, 5, 225-230.
[25] Groenewolt, M. and Antonietti, M. (2013) Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Advanced Materials, 17, 1789-1792.
[26] Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H.Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., Mccomb, D.W., Nellist, P.D. and Nicolosi, V. (2014) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331, 568-571.
[27] Zhang, X.D., Xie, X., Wang, H., Zhang, J.J., Pan, B.C. and Xie, Y. (2014) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of the American Chemical Society, 135, 18-21.
[28] Zhao, H.X., Yu, H.T., Quan, X., Chen, S. and Zhang, Y.B. (2014) Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Applied Catalysis B: Environmental, 152, 46-50.
[29] Nicolosi, V., Chhowalla, M., Kanatzidis, M., Strano, M.S. and Coleman, J.N. (2013) Liquid exfoliation of layered materials. Science, 340, 1421-1439.
[30] Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z.Y., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C. and Coleman, J.N. (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3, 563-568.
[31] Dong, F., Wu, L.W., Sun, Y.J., Fu, M., Wu, Z.B. and Lee, S.C. (2011) Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. Journal of Materials Chemistry, 21, 15171-15174.
[32] Lu, X.L., Xu, K., Chen, P.Z., Jia, K.C., Liu, S. and Wu, C.Z. (2014) Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. Journal of Materials Chemistry A, 2, 18924-18928.
[33] Alivisatos, A.P. (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933-937.
[34] Xu, J., Zhang, L.W., Shi, R. and Zhu, Y.F. (2013) Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry A, 1, 14766-14772.
[35] Zhao, H.X., Yu, H.T., Quan, X., Chen, S., Zhao, H.M. and Wang, H. (2014) Atomic single layer graphitic-C3N4: Fabrication and its high photocatalytic performance under visible light irradiation. RSC Advances, 4, 624-628.
[36] Mas-Balleste, R., Gómez-Navarro, C., Gómez-Herrero, J. and Zamora, F. (2011) 2D materials: To graphene and beyond. Nanoscale, 3, 20-30.
[37] Deifallah, M., McMillan, P. and Cora, F. (2008) Electronic and structural properties of two-dimensional carbon nitride graphenes. Journal of Physical Chemistry C, 112, 5447-5453.
[38] Singh, J.A., Overbury, S.H., Dudney, N.J., Li, M. and Veith, G.B. (2012) Gold nanoparticles supported on carbon nitride: Influence of surface hydroxyls on low temperature carbon monoxide oxidation. ACS Cataly-sis, 2, 1138-1146.
[39] Deng, S.Y., Yuan, P.X. and Ji, X.B. (2015) Carbon nitride nanosheet-supported porphyrin: A new biomimetic catalyst for highly efficient bioanalysis. ACS Applied Materials & Interfaces, 7, 543-552.
[40] Lin, L.S., Cong, Z.X., Li, J., Ke, K.M., Guo, S.S., Yang, H.H. and Chen, G.N. (2014) Graphitic-phase C3N4 nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy. Journal of Materials Chemistry B, 2, 1031-1037.
[41] Park, S.S., Chu, S.W., Xue, C.F., Zhao, D.Y. and Ha, C.S. (2011) Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent. Journal of Materials Chemistry, 21, 10801- 10807.
[42] Mane, G.P., Dhawale, D.S., Anand, C., Ariga, K., Ji, Q., Wahab, M.A., Mori, T. and Vinu, A. (2013) Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. Journal of Materials Chemistry A, 1, 2913-2920.
[43] Yang, S.B., Gong, Y.J., Zhang, J.S., Zhan, L., Ma, L.L., Fang, Z.H., Vajtai, R., Wang, X.C. and Ajayan, P.M. (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Advanced Materials, 25, 2452-2456.
[44] Zou, F., Bozhilov, K., Dillon, R.J., Wang, L., Smith, P., Zhao, X., Bardeen, C. and Feng, P.Y. (2013) Active facets on titanium (III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angewandte Chemie International Edition, 51, 6223-6226.
[45] Martin, D.J., Qiu, K., Shevlin, S.A., Handoko, A.D., Chen, X.W., Chen, Z.X. and Tan, J. (2014) Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angewandte Chemie International Edition, 53, 9240-9245.
[46] Maeda, K., Teramura, K., Lu, D., Takata, T., Saito, N., Inoue, Y. and Domen, K. (2006) Photocatalyst releasing hydrogen from water. Nature, 440, 295.
[47] Maeda, K., Higashi, M., Lu, D., Abe, R. and Domen, K. (2010) Efficient non-sacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. Journal of the American Chemical Society, 132, 5858-5868.
[48] Cao, S.W., Yuan, Y.P., Fang, J., Shahjamali, M.M., Boey, Y.C., Barber, J., Loo, C.J. and Xue, C. (2013) In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. International of Journal Hydrogen Energy, 38, 1258-1266.
[49] Liang, S.J., Wen, L.R., Lin, S., Bi, J.H., Feng, P.Y., Fu, X.Z. and Wu, L. (2014) Monolayer HNb3O8 for selective photocatalytic oxidation of benzylic alcohols with visible light response. Angewandte Chemie International Edition, 53, 2951-2955.
[50] Zhang, Z.Y., Huang, J.D., Zhang, M.Y., Yuan, Q. and Dong, B. (2015) Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D hetero junction photocatalysts toward high photocatalytic activity. Applied Catalysis B: Environmental, 163, 298-305.
[51] Wang, H., Su, Y., Zhao, H.X., Chen, S., Zhang, Y.B. and Quan, X. (2014) Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4. Environmental Science & Technology, 48, 11984-11990.
[52] Wang, W.J., Yu, Y., An, T.C., Li, G.Y., Yip, H.Y., Yu, J.C. and Wong, P.K. (2012) Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: Bactericidal performance and mechanism. Environmental Science & Technology, 46, 4599-4606.