AEPE  >> Vol. 3 No. 4 (August 2015)

    长沙地区太阳能光伏/光热复合家用热水系统经济性分析
    Economic Analysis of Hybrid PV/T Solar System for Domestic Hot Water in Changsha

  • 全文下载: PDF(625KB) HTML   XML   PP.98-106   DOI: 10.12677/AEPE.2015.34015  
  • 下载量: 646  浏览量: 3,487   科研立项经费支持

作者:  

刘仙萍,邹声华:湖南科技大学能源与安全工程学院,湖南 湘潭;
黄建武:长沙天地融节能科技有限公司,湖南 长沙

关键词:
光伏/光热复合热水系统TRNSYS经济性分析Hybrid PV/T Solar System Hot Water System TRNSYS Economical Analysis

摘要:

采用动态系统模拟软件TRNSYS建立4人用水规模的典型家庭光伏/光热复合热水系统模型,以长沙地区的气象参数逐时模拟系统的全年发电和产热量。根据TRNSYS计算结果和当地的电价,对系统进行经济性分析和影响经济性因素的敏感性分析。结果表明:生命周期内该系统在长沙区域使用的动态投资回收期范围为7.6~16 a,能源综合价格现值小于0.3元/KWh,内部收益率范围为11%~24%,具有投资经济可行性。敏感性分析得出,电价增长率和基准折现率对系统的经济性影响较大,系统的经济性随电价增长率增加得到显著提高。

Dynamic system simulation software TRNSYS is adopted to establish the photovoltaic/thermal hybrid domestic hot water system for a typical family scale, for which the hourly meteorological data in Changsha area, Hunan province are used to simulate the annual output of power and heat. Based on the TRNSYS results and the local prices data, the system economic analysis and sensitivity analysis are performed. The results show that the dynamic payback period of investment is 7.6 - 16 a, the present values of comprehensive energy price remain less than 0.3 CNY/KWh, and internal rates of return range from 11% to 24%. The results of economic analysis verify the economic feasibility of the PV/T domestic hot water system. Sensitivity analysis indicate that the annual growth rate of electricity and base discount rate are important factors and the increases of annual growth rate of electricity improve the economic property of the system obviously.

文章引用:
刘仙萍, 邹声华, 黄建武. 长沙地区太阳能光伏/光热复合家用热水系统经济性分析[J]. 电力与能源进展, 2015, 3(4): 98-106. http://dx.doi.org/10.12677/AEPE.2015.34015

参考文献

[1] Kern, E.C. and Russell, M.C. (1978) Combined photovoltaic and thermal hybrid collector systems. Proceedings of the 13th IEEE Photovoltaic Specialists, Washington DC, June 1978, 1153-1157.
[2] Chow, T.T., Pei, G., Fong, K.F., et al. (2009) Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover. Applied Energy, 86, 310-316.
http://dx.doi.org/10.1016/j.apenergy.2008.04.016
[3] Zondag, H.A. (2008) Flat-plate PV-thermal collectors—A review. Renewable & Sustainable Energy Reviews, 12, 891- 959.
[4] 季杰, 陆剑平, 何伟, 等 (2006) 一种新型全铝扁盒式PV/T热水系统. 太阳能学报, 8, 765-773.
[5] Kalogirou, S.A. (1996) Economic analysis of solar energy systems using spreadsheets. Proceedings of the World Renewable Energy Congress IV, 2, 1303-1307.
[6] Kumar, S. and Tiwari, G.N. (2009) Life cycle cost analysis of single slope hybrid (PV/T) active solar still. Applied Energy, 89, 1995-2004.
http://dx.doi.org/10.1016/j.apenergy.2009.03.005
[7] Tselepis, S. and Tri-panagnostopoulos, Y. (2001) Economic analysis of hybrid photovoltaic/thermal solar systems and comparison with stand PV modules. Proceedings of the International Conference on PV in Europe, 7-11 October 2001, 2515-2518.
[8] Tripanagnostopoulos, Y., Souliotis, M., Battisti, R., et al. (2005) Energy, cost and LCA results of PV and hybrid PV/T solar systems. Progress in Photovoltaics: Research and Appliances, 13, 235-250.
http://dx.doi.org/10.1002/pip.590
[9] TRNSYS (2006) TRNSYS 16, a transient system simulation program. Solar Energy Laboratory, Solar Energy Laboratory, University of Wisconsin-Madison, Madison.
[10] GB 50015-2003 (2009) 建筑给水排水设计规范. 80-100.
[11] ASHRAE (2011) 2011 ASHRAE handbook: HVAC applications, chapter 50 service water heating. Atlanta, American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.
[12] 中国气象局气象信息中心气象资料室, 清华大学建筑技术科学系 (2005) 中国建筑热环境分析专用气象数据集.中国建筑工业出版, 北京, 51-58.
[13] 刘仙萍, 饶政华, 廖胜明 (2013) 太阳能光伏/光热复合集热器能量转换性能的数值模拟. 中南大学学报(自然科学版), 6, 2554-2560.
[14] EnergyPlus Energy Simulation Software [EB/OL]. http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=2
_asia_wmo_region_2/country=CHN/cname=China
[15] 李军 (2002) 家用太阳热水器的经济性分析. 太阳能学报, 5, 564-570.