AAM  >> Vol. 4 No. 4 (November 2015)

    对角无穷维哈密顿算子点谱关于虚轴的对称性
    Imaginary Axis Symmetry of the Point Spectrum of the Diagonal Infinite Dimensional Hamiltonian Operators

  • 全文下载: PDF(530KB) HTML   XML   PP.307-312   DOI: 10.12677/AAM.2015.44038  
  • 下载量: 739  浏览量: 3,251  

作者:  

闫利君,刘盎然:内蒙古大学数学科学学院,内蒙古 呼和浩特市

关键词:
无穷维数Hamilton算子点谱剩余谱Infinite Dimensional Hamilton Operator Point Spectrum Residual Spectrum

摘要:
本文将无穷维数Hamilton算子点谱划分为四个部分,得到每个部分的点谱关于虚轴对称的充要条件。运用无穷维数Hamilton算子的谱的结构特点,从而实现了运用内部元素的剩余谱来刻画整体的点谱的关于虚轴的对称性。最后证明了结论的正确性。

In this article, the point spectrum of infinite dimension of Hamilton operators is divided into four parts, getting the sufficient and necessary condition about symmetry of each part of the point spectrum. Using structural characteristics of spectrum of infinite dimension of Hamilton operators, then the symmetry axis of the point spectrum is characterized by using the residual spectrum of internal elements. In the end, some examples are constructed to illustrate the effectiveness of criterion.

文章引用:
闫利君, 刘盎然. 对角无穷维哈密顿算子点谱关于虚轴的对称性[J]. 应用数学进展, 2015, 4(4): 307-312. http://dx.doi.org/10.12677/AAM.2015.44038

参考文献

[1] Azizov, T.Y., Kiriakidi, V.K. and Kurina, G.A. (2001) An Indefinite Approach to the Reduction of a Nonnegative Ha-miltonian Operator Function to a Block Diagonal Form. Functional Analysis and Its Applications, 35, 220-221.
[2] Kurina, G.A. and Martynenko, G.V. (2003) Reducibility of a Class of Operator Functions to Block-Diagonal Form. Mathematical Notes, 74, 744-748.
[3] 阿拉坦仓. 一类无穷维Hamilton算子的本质谱及其应用[J]. 数学物理学报, 2013, 33(5): 984-992.
[4] 吴德玉. 一类无界上三角算子矩阵可逆的充分必要条件[J]. 应用数学与计算数学学报, 2014, 28(4): 486-492.
[5] 吴德玉. 无穷维Hamilton算子特征函数系的Cauchy主值意义下的完备性[J]. 中国科学数学(中文版), 2008, 38(8): 904-912.
[6] 王华, 黄俊杰. 对角无穷维Hamilton算子点谱关于实轴的对称性[J]. 纯粹数学与应用数学, 2013, 25(1): 133-141.
[7] 黄俊杰. 无穷维Hamilton算子的谱及相关问题研究[J]. 数学进展, 2009, 38(2): 129-145.
[8] Azizov, T.Y. and Dijksma, A. (2012) Closedness and Ad-joints of Products of Operators, and Compressions. Integral Equations and Operator Theory, 74, 259-269.
http://dx.doi.org/10.1007/s00020-012-1991-7
[9] 黄俊杰, 范小英. 无穷维Hamilton算子的谱结构[J]. 中国科学: A辑, 2008, 38(1): 71-78.
[10] 孙炯, 王忠. 线性算子的谱分析[M]. 北京: 科学出版社, 2005.
[11] Akhiezer, N.I. and Glazman, I.M. (1993) Theory of Linear Operators in Hilbert Space. Courier Corporation.