AAM  >> Vol. 4 No. 4 (November 2015)

    边坡稳定梯度法优化计算中新的差分格式与收敛准则
    A New Difference Scheme and Convergence Criterion for Gradient Optimization Method for Slope Stability

  • 全文下载: PDF(2144KB) HTML   XML   PP.343-356   DOI: 10.12677/AAM.2015.44043  
  • 下载量: 615  浏览量: 3,254   国家科技经费支持

作者:  

吴梦喜,何蕃民:中国科学院力学研究所,北京;
湛正刚,范福平:中国电建集团贵阳勘测设计研究院,贵州 贵阳

关键词:
边坡稳定差分格式收敛准则优化方法Slope Stability Difference Scheme Convergence Criterion Optimization Method

摘要:
用极限平衡方法计算边坡稳定的安全系数,需要采用优化方法寻找最危险滑裂面。梯度法是一种精确的优化方法方法,然而在边坡稳定分析中存在不能准确找到最危险滑裂面的问题。改进了梯度优化方法,提出了优化方向向量的下降差分格式。它解决了采用中心差分格式出现的搜索方向错误的问题,在有效性、计算精度和优化时间方面都优于中心差分格式。指出了传统梯度优化方法中忽视收敛标准的问题,并提出了一个单变量或多变量沿着优化方向进行优化搜索时的收敛准则。采用2阶段圆弧滑动面搜索方法,对3个测试算例的安全系数进行了下降差分格式和中心差分格式优化搜索的对比,表明改进的梯度法结合下降差分格式是能跳出局部极值的精确有效的方法。算例中采用下降差分格式搜索结果的误差均小于给定误差标准,表明所提出的收敛准则是合适的。

It is necessary to use optimization methods to find the most dangerous sliding surface for the safety factor of slope stability calculated by the limit equilibrium method. Gradient method is an accurate optimization method, however there may fail to find accurately the most dangerous sliding surface. An improved gradient optimization method with a descent difference scheme for the calculation of the direction vector is proposed. The descent difference scheme is superior to the central difference scheme both in accuracy and consuming time. The problem of wrong search direction occurring in the central difference scheme is dissolved in this scheme. The problem of convergence criterion used in the classical optimization method based on the gradient of the objective function is pointed out. A new convergence criterion for single variable optimization or for multivariable optimization along the gradient direction is proposed. The stability of three test examples is analyzed with a two-stage search method for circular slip surface. The gradient method combined with the descent difference scheme is an accurate and efficient method with an ability of avoiding to fall to a local minimum in a search process. The errors of search results in the test examples are less than the given convergence error. The proposed convergence criterion is appropriate.

文章引用:
吴梦喜, 何蕃民, 湛正刚, 范福平. 边坡稳定梯度法优化计算中新的差分格式与收敛准则[J]. 应用数学进展, 2015, 4(4): 343-356. http://dx.doi.org/10.12677/AAM.2015.44043

参考文献

[1] Naylor, D.L. (1982) Finite Elements and Slope Stability. In: Martins, J.B., Ed., Numerical Methods in Geomechanics, D. Reidel Publishing Company, Dordrecht, 229-244. http://dx.doi.org/10.1007/978-94-009-7895-9_10
[2] Kim, J.Y. and Lee, S.R. (1997) An Improved Search Strategy for the Critical Slip Surface Using Finite Element Stress Fields. Compute and Geotech, 22, 295-313.
http://dx.doi.org/10.1016/S0266-352X(97)00027-X
[3] Farias, M.M. and Naylor, D.J. (1998) Safety Analysis Using Finite Elements. Computers and Georechnics, 22, 165- 181.
http://dx.doi.org/10.1016/S0266-352X(98)00005-6
[4] Fredlund, D.G. and Scoular, R.E.G. (1999) Using Limit Equilibrium in Finite Element Slope Stability Analysis. Proceedings of the International Symposium on Slope Stability Engineering, ISShikoku ’99, Matsuyama, 8-11 November 1999, 31-47.
[5] Baker, R. and Garber, M. (1977) Variation Approach to Slope Stability. Proceeding 9th International Conference on Soil Mechanics and Foundation Engineering, 2, 9-12.
[6] Celestion, T.B. and Duncan, J.M. (1981) Simplified Search for Non-Circular Slip Surface. Proceeding 10th International Conference on Soil Mechanics and Foundation Engineering, 3, 391-394.
[7] Nguyen, V.U. (1985) Determination of Critical Slope Failure Surface. Journal of Geotechnical Engineering, ASCE, 111, 238- 250.
[8] Chen, Z.Y. and Shao, C.M. (1988) Evaluation of Minimum Factor of Safety in Slope Stability Analysis. Canadian Geotechnical Journal, 25, 735-748.
http://dx.doi.org/10.1139/t88-084
[9] Bardet, J. and Kapuskar, M. (1989) A Simplex Analysis of Stability. Computers and Geotechnics, 8, 329-348.
http://dx.doi.org/10.1016/0266-352X(89)90039-6
[10] McCombie, P. and Wilkinson, P. (2002) The Use of the Simple Genetic Algorithm in Finding the Critical Factor of Safety in Slope Stability Analysis. Computers and Geo-technics, 29, 699-714.
http://dx.doi.org/10.1016/S0266-352X(02)00027-7
[11] Taha, M.R., Khajehzadeh, M. and EI-Shafie, A. (2010) Slope Stability Assessment Using Optimization Techniques: An Overview. Electronic Journal of Geotechnical Engi-neering, 15, 1901-1915.
[12] Cheng, Y.M. and Lau, C.K. (2008) Slope Stability Analysis and Stabilization. Routledge, Cornwall.
[13] 朱伯芳, 黎展眉, 张璧城. 结构优化设计原理与应用[M]. 北京: 水利电力出版社, 1984.
[14] 陈祖煜. 土质边坡稳定分析: 原理、方法、程序[M]. 北京: 中国水利水电出版社, 2003.
[15] 周圆冗, 李守巨, 刘迎曦, 等. 基于遗传算法边坡稳定分析临界滑移面的搜索[J]. 岩石力学与工程学报, 2005, 24(Supp. 1): 5226-5230.
[16] 张小稳, 张晓芳, 李国英. 基于弦高控制变量的边坡稳定分析方法[J]. 水利水运工程学报, 2007, 10(4): 62-65.
[17] Donald, I.B. and Giam, P. (1992) The ACADS Slope Stability Programs Review. 6th International Symposium on landslides, 3, 1665-1670.