AEPE  >> Vol. 3 No. 6 (December 2015)

    高超发动机涡轮离心泵的能量和汽蚀性能研究
    Research on Power and Cavitation Performance on a High-Speed Engine Turbine Centrifugal Pump

  • 全文下载: PDF(1107KB) HTML   XML   PP.230-237   DOI: 10.12677/AEPE.2015.36032  
  • 下载量: 676  浏览量: 3,784   国家自然科学基金支持

作者:  

裴崇雁,黎林林,程洪贵:中国航天科工集团三十一研究所,高超声速冲压发动机技术重点实验室,北京;
孙强强,蒋 劲,富 友:武汉大学,动力与机械学院,水力机械过渡过程教育部重点实验室,湖北 武汉

关键词:
能量与汽蚀性能高速发动机涡轮离心泵变螺距诱导轮数值模拟Power and Cavitation Performance High-Speed Engine Turbine Centrifugal Pump Variable Pitch Inducer Numerical Simulation

摘要:

诱导轮的几何形状对于高超发动机涡轮离心泵的能量与汽蚀性能有很大影响。本文中利用RNG k-ε湍流模型和Schnerr-Sauer空化模型对于泵的基本流道、前置两种不同几何结构的变螺距诱导轮进行数值模拟,计算结果表明,通过在泵主叶轮前置变螺距诱导轮,可以显著的改善泵的能量与汽蚀性能前置叶尖直径为常数的变螺距诱导轮离心泵相比前置叶尖直径线性变化的变螺距诱导轮的离心泵,据有更好的汽蚀性能。

Inducer geometry has a significant effect on power and suction performance on a high-speed engine turbine centrifugal pump. In the present work, numerical simulation is performed on a high- speed engine turbine centrifugal pump without and with different variable pitch inducer and the RNG k-ε turbulent model and Schnerr-Sauer cavitation model are adopted to simulate the turbulent flow and mass transfer of working material. The result shows that the power and cavitation performance on a high-speed engine turbine centrifugal pump can be improved markedly by installing a variable pitch inducer before the impeller. The cavitation performance of pump with variable pitch inducer whose leaves diameter is constant is better than the one’s leaves diameter is variable.

文章引用:
裴崇雁, 黎林林, 程洪贵, 孙强强, 蒋劲, 富友. 高超发动机涡轮离心泵的能量和汽蚀性能研究[J]. 电力与能源进展, 2015, 3(6): 230-237. http://dx.doi.org/10.12677/AEPE.2015.36032

参考文献

[1] Campos-Amezcua, R., Bakir, F., Campos-Amezcua, A., Khelladi, S., Palacios-Gallegos, M. and Rey, R. (2015) Nu-merical Analysis of Unsteady Cavitating Flow in an Axial Inducer. Applied Thermal Engineering, 75, 1302-1310.
http://dx.doi.org/10.1016/j.applthermaleng.2014.07.063
[2] Brennen, C.E. (1995) Cavitation and Bubble Dy-namics. Oxford University Press, New York.
[3] Boyce, B.P. (2010) Tip Vortex Back Flow Cavitation and Suppres-sion in High Speed Pump Inducers. Mathematics Subject Classification: 76—Fluid Mechanics, 62, 57-68.
[4] Ji, B., Luo, X.W., Arndt, R.E.A. and Wu, Y.L. (2014) Numerical Simulation of Three Dimensional Cavitation Shedding Dy-namics with Special Emphasis on Cavitation-Vortex Interaction. Ocean Engineering, 87, 64-77.
http://dx.doi.org/10.1016/j.oceaneng.2014.05.005
[5] Noguera, R., Rey, R., Massouh, F., Bakir, F. and Kouidri, S. (1993) Design and Analysis of Axial Pumps. In: Conference: Proc. ASME Fluids Engineering Division Summer Meeting, Second Pumping Machinery Symposium, Washington DC, 95-111.
[6] Bakir, F., Kouidri, S., Noguera, R. and Rey. R. (1998) Design and Analysis of Axial Inducser Performances. In: ASME Fluid Machinery Forum. Division Summer Meeting, Washington DC.
[7] Pouffary, B., Patella, R.F., Rebound, J.L. and Lambert, P.A. (2008) Numerical Analysis of Cavitaton Instabilities in Inducer Blade Cascade. ASME Journal of Fluids Engineering, 130, 041302.
http://dx.doi.org/10.1115/1.2903823
[8] Lee, K., Choi, J. and Kang, S. (2012) Cavitation Performance and In-stability of a Two-Bladed Inducer. Journal of Propulsion and Power, 28, 1168-1175.
http://dx.doi.org/10.2514/1.B34459
[9] Tamura, Y. and Matsumoto, Y. (2009) Improvement of Bubble Model for Cavitating Flow Simulations. Publishing House for Journal of Hydrodynamics, Series B, 21, 41-46.
[10] Choi, Y.-D., Kurokawa, J. and Imamura, H. (2007) Suppression of Cavitation in Inducers by J-Grooves. ASME Journal of Fluids Engineering, 129, 15-22.
http://dx.doi.org/10.1115/1.2375126
[11] Kurokawa, J., Saha, S.L., Matsui, J. and Kitahora, T. (2000) Passive Control of Rotating Stall in a Parallel-Wall Vaneless Diffuser by Radial Grooves. ASME Journal of Fluids Engineering, 122, 90-96.
http://dx.doi.org/10.1115/1.483230
[12] Saha, S.L., Kurokawa, J. and Imamura, H. (2000) Suppression of Performance Curve Instability of a Mixed Flow Pump by Use of J-Grooves. ASME Journal of Fluids Engineering, 122, 592-597.
http://dx.doi.org/10.1115/1.1287855
[13] Saha, S.L., Kurokawa, J. and Imamura, H. (2001) Passive Control of Rotating Stall in a Parallel-Wall Vaned Diffuser by J-Grooves. ASME Journal of Fluids Engineering, 122, 507-515.
http://dx.doi.org/10.1115/1.1374214
[14] Nagahara, T., Manabe, A., Mukai, H., Okamura, T. and Kurokawa (2003) An Improvement of Performance—Curve Instability in an Axial Flow Pump by Use of J-Grooves. ASME J. Turbomach., 31, 614-622.
[15] Orszag, S.A., Yakhot, V., Flannery, W.S. Boysan, F., Choudhury, D., Maruzewski, J. and Patel, B. (1993) Renormalization Group Modeling and Turbulence Simulations. International Conference on Near-Wall Turbulent Flows, Tempe.
[16] Schnerr, G.H. and Sauer, J. (2001) Physical and Numerical Modeling of Unsteady Cavitation Dynamics. Proceedings of 4th international Conference on Multi-Phase Flow, New Orleans.