AAM  >> Vol. 5 No. 1 (February 2016)

    Calculation of Topological Index for Fullerene C10n

  • 全文下载: PDF(444KB) HTML   XML   PP.150-157   DOI: 10.12677/AAM.2016.51020  
  • 下载量: 478  浏览量: 1,855   国家自然科学基金支持


韩念念,高 炜:云南师范大学信息学院,云南 昆明

化学图论富勒烯第二类ABC指数第二类GA指数修改的Szeged指数Chemical Graph Theory Fullerene The Second ABC Index The Second GA Index Modified Szeged Index


In computational chemistry, the molecular structures are modelled as graphs which are called the molecular graphs. In these graphs, each vertex represents an atom and each edge denotes covalent bound between atoms. It is shown that the topological indices defined on the molecular graphs can reflect the chemical characteristics of chemical compounds and drugs. In this paper, we present the second ABC index, the second GA index and modified Szeged index of fullerenes C10n by means of chemical structure analysis and edge dividing techniques.

韩念念, 高炜. 富勒烯C10n的化学拓扑指数计算[J]. 应用数学进展, 2016, 5(1): 150-157. http://dx.doi.org/10.12677/AAM.2016.51020


[1] Farahani, M.R., Gao, W. and Kanna, M.R.R. (2015) On The Omega Polynomials of A Family of Hydrocarbon Mole-cules “Polycyclic Aromatic Hydrocarbons Pank”. Asian Academic Research Journal of Multidisciplinary, 2, 263-268.
[2] Gao, W. and Shi, L. (2014) Wiener Index of Gear Fan Graph And Gear Wheel Graph. Asian Journal of Chemistry, 26, 3397-3400.
[3] Farahani, M.R. and Gao, W. (2015) The Schultz Index and Schultz Polynomial of the Jahangir Graphs . Applied Mathematics, 6, 2319-2325. http://dx.doi.org/10.4236/am.2015.614204
[4] Xi, W.F. and Gao, W. (2014) Geometric-Arithmetic Index and Zagreb Indices of Certain Special Molecular Graphs. Journal of Advances in Chemistry, 10, 2254-2261.
[5] Gao, W. and Shi, L. (2015) Szeged Related Indices of Unilateral Polyomino Chain and Unilateral Hexagonal Chain. IAENG International Journal of Applied Mathematics, 45, 138-150.
[6] Gao, W. and Farahani, M.R. (2016) Degree-Based Indices Computation for Special Chemical Molecular Structures Using Edge Dividing Method. Applied Mathematics and Nonlinear Sciences, 1, 94-117.
[7] Estrada, E., Torres, L., Rodrguez, L. and Gutman, I. (1998) An Atom-Bond Connectivity Index: Modelling the Enthalpy of Formation of Alkanes. Indian Journal of Chemistry A, 37, 849-855.
[8] Ghorbani, M. and Jalili, M. (2009) Computing A New Topological Index of Nano Structures. Digest Journal of Nanomaterials and Biostructures, 4, 681-685.
[9] Ghorbani, M. and Hosseinzadeh, M.A. (2010) Computing ABC4 Index of Nanostar Dendrimers. Op-toelectronics and Advanced Materials-Rapid Communications, 4, 1419-1422.
[10] Ghorbani, M. and Ghazi, M. (2010) Computing Some Topological Indices of Triangular Benzenoid. Digest Journal of Nanomaterials and Bios-tructures, 5, 1107-1111.
[11] Graovac, A. and Ghorbani, M. (2010) A New Version of Atom-Bond Connectivity Index. Acta Chimica Slovenica, 57, 609-612.
[12] Rostami, M., Haghighat, M.S. and Ghorbani, M. (2013) On Second Atom-Bond Connectivity Index. Iranian Journal of Mathematical Chemistry, 4, 265-270.
[13] Tabar, G.F., Purtula, B. and Gutman, I. (2010) A New Geometric-Arithmetic Index. Journal of Mathematical Chemistry, 47, 477-486.
[14] Zhan, F.Q. and Qiao, Y.F. (2014) The Second Geometric-Arithmetic Index of the Starlike Tree with k-Component. Mathematics in Practice and Theory, 44, 226-229.
[15] Xing, R. and Zhou, B. (2011) On the Revised Szeged Index. Discrete Applied Mathematics, 159, 69-78.
[16] Chen, L., Li, X. and Liu, M. (2014) The (Revised) Szeged Index and the Wiener Index of a Nonbipartite Graph. European Journal of Combinatorics, 36, 237-246.
[17] Dong, H., Zhou, B. and Trinajstic, N. (2011) A Novel Version of the Edge-Szeged Index. Croatica Chemica Acta, 84, 543-545.
[18] Faghani, M. and Ashrafi, A.R. (2014) Revised and Edge Revised Szeged Indices of Graphs. Ars Mathematica contemporanea, 7, 153-160.