AMB  >> Vol. 5 No. 1 (March 2016)

    提高微生物可培养性的方法的研究概况和进展
    Progress on Methods for Increasing Microbial Culturability

  • 全文下载: PDF(430KB) HTML   XML   PP.1-8   DOI: 10.12677/AMB.2016.51001  
  • 下载量: 708  浏览量: 3,642   国家科技经费支持

作者:  

李俊霞,刘晨光:中国海洋大学,山东 青岛

关键词:
不可培养微生物培养方法培养技术凝胶剂Uncultured Microorganisms Cultivation Method Cultivation Technology Gelling Agent

摘要:

自然界中的微生物具有非常丰富的物种多样性,具有巨大的资源利用价值。然而,目前为止,可以在实验室中培养的微生物总数只是自然界微生物多样性的一小部分,绝大多数微生物不能利用传统的培养技术和培养方法获得纯培养。本文简述了一些影响微生物可培养性的因素和近年来出现的一些新颖的微生物培养技术,重点介绍了通过改良微生物培养基的组成,改变微生物培养基的凝胶剂和改善微生物培养条件在提高微生物的可培养性方面取得的显著进展。这些方法的研究,显著提高了微生物的可培养性,分离和鉴定了许多微生物新种,丰富了微生物的物种多样性,为微生物资源的开发和利用奠定了基础。

Microorganisms in nature have a tremendous species diversity and high value of utilization. However, only a small proportion of microbes in nature can be cultured under laboratory conditions. That is because most microorganisms cannot be cultured under traditional cultivation methods and technologies. This review summarized the factors influencing culturability and new cultivation technologies, focusing on microbiological culture medium modification, gelling agent selection and the improvement culture condition. These technologies significantly increased microbial culturability, resulting in new microbial species isolation and identification, and consequently improved microbial species diversity. Applications of these technologies may exert great effect on microbial resource development.

文章引用:
李俊霞, 刘晨光. 提高微生物可培养性的方法的研究概况和进展[J]. 微生物前沿, 2016, 5(1): 1-8. http://dx.doi.org/10.12677/AMB.2016.51001

参考文献

[1] 牛丽纯, 孙玉芳, 赵天琦, 等. 未培养微生物的限制因素及培养方法研究进展[J]. 微生物前沿, 2014, 3(2): 17-28.
http://dx.doi.org/10.12677/AMB.2014.32003
[2] Newman, D.K. and Banfield, J.F. (2002) Geomicrobiology: How Molecular-Scale Interactions Underpin Biogeochemical Systems. Science, 296(5570): 1071-1077.
http://dx.doi.org/10.1126/science.1010716
[3] Woese, C.R. and Fox, G.E. (1977) Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms. Proceedings of the National Academy of Sciences, 74, 5088-5090.
http://dx.doi.org/10.1073/pnas.74.11.5088
[4] Annelie, P., Jakob, P. and Rudolf, A. (2002) Fluorescence in Situ Hybridization and Catalyzed Reporter Deposition for the Identification of Marine Bacteria. Applied & Environmental Microbiology, 68, 3094-3101.
http://dx.doi.org/10.1128/AEM.68.6.3094-3101.2002
[5] Peters, S., Koschinsky, S., Schwieger, F., et al. (2000) Succession of Microbial Communities during Hot Composting as Detected by PCR-Single-Strand-Conformation Polymorphism-Based Genetic Profiles of Small-Subunit rRNA Genes. Applied & Environmental Microbiology, 66, 930-936.
http://dx.doi.org/10.1128/AEM.66.3.930-936.2000
[6] Liu, W.T., Marsh, T.L., Cheng, H., et al. (1997) Characterization of Microbial Diversity by Determining Terminal Restriction Fragment Length Polymorphisms of Genes Encoding 16S rRNA. Applied & Environmental Microbiology, 63, 4516-4522.
[7] 田甜, 李冬梅, 戴世鲲, 等. 海洋环境中难培养微生物的寡营养培养[J]. 微生物学通报, 2009(36): 1031-1039.
[8] 王丽玲, 林景星, 胡建芳. 深海热液喷口生物群落研究进展[J]. 地球科学进展, 2008, 23(6): 604-612.
[9] 袁东芳, 于乐军, 刘晨光. 海洋微生物高通量培养方法和分选技术的研究进展[J]. 微生物学通报, 2014, 41(6): 1180-1187.
[10] Scholten, H.J. and Rlm, P. (1998) Agar as a Gelling Agent: Chemical and Physical Analysis. Plant Cell Reports, 17, 230-235.
http://dx.doi.org/10.1007/s002990050384
[11] Das, N., Tripathi, N., Basu, S., Bose, C., Maitra, S. and Khurana, S. (2015) Progress in the Development of Gelling Agents for Improved Culturability of Microorganisms. Frontiers in Microbiology, 6, 698.
http://dx.doi.org/10.3389/fmicb.2015.00698
[12] Abbott, I.A. and Chapman, F.A. (1981) Evaluation of Kappa Carrageenan as a Substitute for Agar in Microbiological Media. Archives of Microbiology, 128, 355-359.
http://dx.doi.org/10.1007/BF00405912
[13] Datta, S., Mody, K., Gopalsamy, G. and Jha, B. (2011) Novel Application of κ-Carrageenan: As a Gelling Agent in Microbiological Media to Study Biodiversity of Extreme Alkaliphiles. Carbohydrate Polymers, 85, 465-468.
http://dx.doi.org/10.1016/j.carbpol.2011.02.036
[14] Lin, C.C. and Casida, L.E. (1984) GELRITE as a Gelling Agent in Media for the Growth of Thermophilic Microorganisms. Applied and Environmental Microbiology, 47, 427-429.
[15] Shungu, D., Valiant, M., Tutlane, V., Weinberg, E., Weissberger, B., Koupal, L., Gadebusch, H. and Stapley, E. (1983) GELRITE as an Agar Substitute in Bacteriological Media. Applied and Environmental Microbiology, 46, 840-845.
[16] 金一荻. 基于结冷胶培养基的乌梁素海富营养化水体中可培养细菌的多样性分析[D]: [硕士学位论文]. 呼和浩特: 内蒙古农业大学, 2011.
[17] Hideyuki, T., Yuji, S., Satoshi, H., Nakamura, K., Nomura, N., Matsumura, M. and Kamagata, Y. (2005) Comparative Analysis of Bacterial Diversity in Freshwater Sediment of a Shallow Eutrophic Lake by Molecular and Improved Cultivation-Based Techniques. Applied and Environmental Microbiology, 71, 2162-2169.
http://dx.doi.org/10.1128/AEM.71.4.2162-2169.2005
[18] Tamaki, H., Hanada, S., Sekiguchi, Y., Tanaka, Y. and Kamagata, Y. (2009) Effect of Gelling Agent on Colony Formation in Solid Cultivation of Microbial Community in Lake Sediment. Environmental Microbiology, 11, 1827-1834.
http://dx.doi.org/10.1111/j.1462-2920.2009.01907.x
[19] Kathryn, E.R.D., Shayne, J.J. and Peter, H.J. (2005) Effects of Growth Medium, Inoculum Size, and Incubation Time on Culturability and Isolation of Soil Bacteria. Applied and Environmental Microbiology, 71, 826-834.
http://dx.doi.org/10.1128/AEM.71.2.826-834.2005
[20] Janssen, P.H., Yates, P.S., Grinton, B.E., Taylor, P.M. and Sait, M. (2002) Improved Culturability of Soil Bacteria and Isolation in Pure Culture of Novel Members of the Divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology, 68, 2391-2396.
http://dx.doi.org/10.1128/AEM.68.5.2391-2396.2002
[21] Sait, M., Hugenholtz, P. and Janssen, P.H. (2002) Cultivation of Globally Distributed Soil Bacteria from Phylogenetic Lineages Previously Only Detected in Cultivation-Independent Surveys. Environmental Microbiology, 4, 654-666.
http://dx.doi.org/10.1046/j.1462-2920.2002.00352.x
[22] Sahay, S. (1999) The Use of Psyllium (Isubgol) as an Alternative Gelling Agent for Microbial Culture Media. World Journal of Microbiology & Biotechnology, 15, 733-735.
http://dx.doi.org/10.1023/A:1008954128637
[23] 黎丽华. 瓜尔胶的改性、共混及其应用研究[D]: [硕士学位论文]. 武汉: 武汉大学, 2004.
[24] Jain, R., Anjaiah, V. and Babbar, S.B. (2005) Guar Gum: A Cheap Substitute for Agar in Microbial Culture Media. Letters in Applied Microbiology, 41, 345-349.
http://dx.doi.org/10.1111/j.1472-765X.2005.01760.x
[25] Petri, D.F.S. (2015) Xanthan Gum: A Versatile Biopolymer for Biomedical and Technological Applications. Journal of Applied Polymer Science, 132, 1-13.
http://dx.doi.org/10.1002/app.42035
[26] Babbar, S.B. and Jain, R. (2006) Xanthan Gum: An Economical Partial Substitute for Agar in Microbial Culture Media. Current Microbiology, 52, 287-292.
http://dx.doi.org/10.1007/s00284-005-0225-5
[27] Santini, J.M., Sly, L.I., Schnagl, R.D. and Macy, J.M. (2000) A New Chemolithoautotrophic Arsenite-Oxidizing Bacterium Isolated from a Gold Mine: Phylogenetic, Physiological, and Preliminary Biochemical Studies. Applied and Environmental Microbiology, 66, 92-97.
http://dx.doi.org/10.1128/AEM.66.1.92-97.2000
[28] Sorokin, D.Y., Tourova, T.P., Kolganova, T.V., Detkova, E.N., Galinski, E.A. and Muyzer, G. (2011) Culturable Diversity of Lithotrophic Haloalkaliphilic Sulfate-Reducing Bacteria in Soda Lakes and the Description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov. Extremophiles, 15, 391-401.
http://dx.doi.org/10.1007/s00792-011-0370-7
[29] Coppola, S., Zoina, A. and Marino, P. (1976) Interactions of N6-(delta2-isopentenyl)adenine with Cyclic AMP on the Regulation of Growth and Beta-Galactosidase Synthesis in Escherichia coli. Journal of General Microbiology, 94, 436-438.
http://dx.doi.org/10.1099/00221287-94-2-436
[30] Chen, G.C.C. and Brown, A. (1985) Bacterial Growth and the Concentrations of Cyclic Nucleotides in Legionella pneumophila Cultures. Current Microbiology, 12, 23-26.
http://dx.doi.org/10.1007/BF01567748
[31] Bruns, A., Cypionka, H. and Overmann, J. (2002) Cyclic AMP and Acyl Homoserine Lactones Increase the Cultivation Efficiency of Heterotrophic Bacteria from the Central Baltic Sea. Applied and Environmental Microbiology, 68, 3978-3986.
http://dx.doi.org/10.1128/AEM.68.8.3978-3987.2002
[32] 岳秀娟, 余利岩, 李秋萍, 魏玉珍, 关艳, 张月琴. 自然界中难分离培养微生物的分离和应用[J]. 微生物学通报, 2006, 33(3): 77-81.
[33] Connon, S.A. and Giovannoni, S.J. (2002) High-Throughput Methods for Culturing Microorganisms in Very-Low- Nutrient Media Yield Diverse New Marine Isolates. Applied and Environmental Microbiology, 68, 3878-3885.
http://dx.doi.org/10.1128/AEM.68.8.3878-3885.2002
[34] Rappé, M.S., Connon, S.A., Vergin, K.L. and Giovannoni, S.J. (2002) Cultivation of the Ubiquitous SAR11 Marine Bacterioplankton Clade. Nature, 418, 630-633.
http://dx.doi.org/10.1038/nature00917
[35] Nichols, D., Lewis, K., Orjala, J., Mo, S., Ortenberg, R., O’Connor, P., Zhao, C., Vouros, P., Kaeberlein, T. and Epstein, S.S. (2008) Short Peptide Induces an “Uncultivable” Microorganism to Grow in Vitro. Applied and Environmental Microbiology, 74, 4889-4897.
http://dx.doi.org/10.1128/AEM.00393-08
[36] Burmølle, M., Johnsen, K., Al-Soud, W.A., Hansen, L.H. and Sørensen, S.J. (2009) The Presence of Embedded Bacterial Pure Cultures in Agar Plates Stimulate the Culturability of Soil Bacteria. Journal of Microbiological Methods, 79, 166-173.
http://dx.doi.org/10.1016/j.mimet.2009.08.006
[37] Song, J., Oh, H.M. and Cho, J.C. (2009) Improved Culturability of SAR11 Strains in Dilution-to-Extinction Culturing from the East Sea, West Pacific Ocean. FEMS Microbiology Letters, 295, 141-147.
http://dx.doi.org/10.1111/j.1574-6968.2009.01623.x
[38] Hugenholtz, P. (2002) Exploring Prokaryotic Diversity in the Genomic Era. Genome Biology, 3, reviews0003.
[39] Männistö, M.K. and Puhakka, J.A. (2002) Psychrotolerant and Microaerophilic Bacteria in Boreal Groundwater. FEMS Microbiology Ecology, 41, 9-16.
http://dx.doi.org/10.1016/S0168-6496(02)00262-3
[40] Kaakoush, N.O., Miller, W.G., Reuse, H.D. and Mendz, G.L. (2007) Oxygen Requirement and Tolerance of Campylobacter jejuni. Research in Microbiology, 158, 644-650.
http://dx.doi.org/10.1016/j.resmic.2007.07.009
[41] Hirvelä-Koski, V. (2008) The Fish Pathogen Renibacterium salmoninarum: Growth in a Microaerophilic Atmosphere. Veterinary Microbiology, 127, 191-195.
http://dx.doi.org/10.1016/j.vetmic.2007.08.011
[42] Anders, O., Cockrell, D.C., Dale, H., Fischer, E.R., Virtaneva, K., Sturdevant, D.E., Porcella, S.F. and Heinzen, R.A. (2009) Host Cell-Free Growth of the Q Fever Bacterium Coxiella burnetii. Proceedings of the National Academy of Sciences of the United States of America, 106, 4430-4434.
http://dx.doi.org/10.1073/pnas.0812074106