# 基于时间序列的电力负荷数据分析Analysis of Electric Load Data Based on Time Series

• 全文下载: PDF(542KB)    PP.214-224   DOI: 10.12677/AAM.2016.52028
• 下载量: 393  浏览量: 1,133   国家自然科学基金支持

Time series analysis method is one of the important tools in the field of power load forecasting. It mainly describes the law of the historical data dynamic change over time to predict the future value by establishing a relevant model. In this paper, Winter’s exponential smoothing method and seasonal ARIMA model are applied to model estimating on the power load data, and the authors use the Mean Absolute Percentage Error (MAPE) to measure the accuracy. The results prove that both of them have high fitting and forecasting precision.

 [1] 牛东晓. 电力负荷预测技术及其应用[M]. 北京: 中国电力出版社, 1998: 40-54, 59-88, 95-134, 185-101. [2] 邓祖新. 数据分析方法和SAS系统[M]. 上海: 上海财经大学出版社, 2006: 390-443. [3] 吴仁群. 经济预测与决策[M]. 北京: 中国人民大学出版社, 2015: 34-36, 92-140. [4] 梁慧玲, 赵嘉阳, 林玉蕊. 温特线性与季节指数平滑法在气温中的应用[J]. 科技和产业, 2015(9): 145-148. [5] Hanzák, T. (2012) Holt-Winters Method with General Seasonality. Kybernetika Praha, 1, 1-15. [6] 王燕. 应用时间序列分析[M]. 北京: 中国人民大学出版社, 2012: 41-110. [7] 孙国红, 沈跃, 徐应明, 等. 基于Box-Jenkins方法的黄河水质时间序列分析与预测[J]. 农业环境科学学报, 2011, 30(9): 1888-1895. [8] Brockwell, P.J. and Davis, R.A. 时间序列: 理论与方法[M]. 田铮, 译. 北京：高等教育出版社, 2001: 200-202, 214-254. [9] Kumar, S.V. and Vanajakshi, L. (2015) Short-Term Traffic Flow Prediction Using Seasonal ARIMA Model with Limited Input Data. European Transport Research Review, 7, 1-9. http://dx.doi.org/10.1007/s12544-015-0170-8 [10] Box, G.E.P. 时间序列分析: 预测与控制[M]. 王成璋, 等, 译. 北京: 机械工业出版社, 2011: 116-125. [11] 邓盛川, 于德亮, 齐维贵. 基于乘积季节ARIMA模型的供热负荷预报[J]. 沈阳工业大学学报, 2011(3): 321-325. [12] Eni, D. and Adeyeye, F.J. (2015) Seasonal ARIMA Modeling and Forecasting of Rainfall in Warri Town, Nigeria. Journal of Geoscience & Environment Protection, 3, 91-98. http://dx.doi.org/10.4236/gep.2015.36015 [13] 叶舟, 陈康民. 温斯特线性与季节性指数平滑法在电力负荷预测中的应用及改进[J]. 电力建设, 2000, 21(8): 13-16.