浓核病毒HaDNV-1在棉铃虫种群中传播的数学模型
Modeling the Transmission of Densovirus (HaDNV-1) in the Helicoverpa armigera Population
DOI: 10.12677/AAM.2016.52031, PDF, HTML, XML, 下载: 1,994  浏览: 6,131  国家自然科学基金支持
作者: 陈淑庭, 郭志明:广州大学数学与信息科学学院,广东 广州
关键词: 种群竞争互利共生雌性传播优势稳定性Species Competition Mutualistic Symbiont Female Transmission Advantage Stability
摘要: HaDNV-1是一种与棉铃虫互利共生的浓核病毒,垂直传播时具有“雌性传播优势”机制。通过建立棉铃虫种群竞争模型,研究HaDNV-1在其种群内的传播情形。在不考虑HaDNV-1对棉铃虫的危害时,通过分析模型平衡点的稳定性得出感染型棉铃虫在竞争中占优势的结论。在考虑HaDNV-1对棉铃虫危害时,分别建立了棉铃虫造成成虫和幼虫死亡率增加的模型,并得到了使得感染型棉铃虫最终灭绝的成虫死亡率及幼虫死亡率的范围。
Abstract: Densovirus (HaDNV-1) is a mutualistic symbiont of Helicoverpa armigera, and the infected females occupy advantage in vertical transmission. A model of species competition was posed to understand the influence of HaDNV-1. When the damage of HaDNV-1 is neglected, the stability of equilibria was analysed and a conclusion was drawn that the infected is dominant in Helicoverpa armigera population. Considering the harm of HaDNV-1, the model was modified by raising the mortality of the infected adult and larva respectively to indicate the cost; thereby the mortality was evaluated to lead to the infected pests extinct.
文章引用:陈淑庭, 郭志明. 浓核病毒HaDNV-1在棉铃虫种群中传播的数学模型[J]. 应用数学进展, 2016, 5(2): 242-254. http://dx.doi.org/10.12677/AAM.2016.52031

参考文献

[1] 周志香, 王志伟, 刘文平, 等. 棉铃虫综合因素预报模型研究[J]. 中国农业气象, 2000, 21(4): 38-43.
[2] 刘硕, 吴凤祥. 棉铃虫预测模型与模拟研究[D]: [硕士学位论文]. 保定: 河北农业大学, 2014.
[3] 高增祥, 徐汝梅, 吴子江, 等. 基于生命表参数的棉铃虫种群动态研究[J]. 昆虫学报, 2005, 48(4): 568-575.
[4] 苏战平, 张孝羲, 翟保平. 江苏棉区第5代棉铃虫种群动态的模拟及预测[J]. 昆虫学报, 2002, 45(4): 465-470.
[5] Xu, P., Liu, Y., Graham, R.I., et al. (2014) Densovirus Is a Mutualistic Symbiont of a Global Crop Pest (Helicoverpa armigera) and Protects against a Baculovirus and Bt Biopesticide. PLoS Pathogens, 10, e1004490.
http://dx.doi.org/10.1371/journal.ppat.1004490
[6] 农业部网. 中国农科院专家发现棉铃虫互利共生新病毒[EB/OL]. http://news.xinhuanet.com/politics/2014-11/03/c_127173112.htm, 2014-11-03.
[7] Georgievska, L., De Vries, R.S., Gao, P., et al. (2010) Transmission of Wild-Type and Recombinant HaSNPV among Larvae of Helicoverpa armigera (Lepidoptera: Noctuidae) on Cotton. Environmental Entomology, 39, 459-467.
http://dx.doi.org/10.1603/EN09183
[8] Sun, X., Chen, X., Zhang, Z., et al. (2002) Bolloworm Responses to Re-lease of Genetically Modefied Helicover armigera Nucleopolyhedroviruses in Cotton. Journal of Invertebrate Pathology, 81, 63-69.
http://dx.doi.org/10.1016/S0022-2011(02)00144-1
[9] Zhou, M., Sun, X.L., Sun, X.C., et al. (2005) Horizontal and Vertical Transmission of Wild-Type and Recombinant Helicoverpa armigera Single-Nucleocapsid Nucleopolyhe-drovirus. Journal of Invertebrate Pathology, 89, 165-175.
http://dx.doi.org/10.1016/j.jip.2005.03.005
[10] Sun, X., van der Werf, W., Bianchi, J.J.A., et al. (2006) Modeling Biological Control with Wild-Type and Genetically Modified Baculoviruses in the Helicoverpa armigera-Cotton System. Ecological Modelling, 198, 387-398.
http://dx.doi.org/10.1016/j.ecolmodel.2006.05.011
[11] Li, J. (2008) Differential Equations Models for Interacting Wild and Transgenic Mosquito Populations. Journal of Biological Dynamics, 2, 241-258.
http://dx.doi.org/10.1080/17513750701779633
[12] Smith, H. (2010) An Introduction to Delay Differential Equ-ations with Applications to the Life Sciences. Texts in Applied Mathematics, Vol. 57. Springer, New York.
[13] Liu, S. and Chen, L. (2002) Extinction in Competition and Permanence in Competitive Stage-Structure System with Time Delay. Journal of Mathematical Analysis & Applications, 51, 1347-1361.