[1]
|
Zane, A. and Weiss, Z. (1998) A Procedure for Classifying Rock-Forming Chlorites Based on Microprobe Data. Rendiconti Lincei, 9, 51-56. http://dx.doi.org/10.1007/BF02904455
|
[2]
|
Velde, S. and Hillier ANO, B. (1991) Octahedral Occupancy and the Chemical Composition of Diagenetic (Low- Temperature) Chlorites. Clay Minerals, 26, 149-168. http://dx.doi.org/10.1180/claymin.1991.026.2.01
|
[3]
|
De caritat, P., Hutcheon, I. and Walshe, J.L. (1993) Chlorite Geother-mometry: A Review. Clays and Clay Minerals, 41, 219-239. http://dx.doi.org/10.1346/CCMN.1993.0410210
|
[4]
|
Inoue, A., Meunier, A., Patrier-Mas, P., et al. (2009) Application of Chemical Geothermometry to Low-Temperature Trioctahedral Chlorites. Clays and Clay Minerals, 57, 371-382. http://dx.doi.org/10.1346/CCMN.2009.0570309
|
[5]
|
Bourdelle, F., Parra, T., Chopin, C., et al. (2013) A New Chlorite Geothermometer for Diagenetic to Low-Grade Metamorphic Conditions. Contributions to Mineralogy and Petrology, 165, 723-735.
http://dx.doi.org/10.1007/s00410-012-0832-7
|
[6]
|
Hey, M.H. and Hey, M.H. (1954) A New Review of the Chlorites. Minera-logical Magazine, 30, 277-292.
http://dx.doi.org/10.1180/minmag.1954.030.224.01
|
[7]
|
Foster, M D. (1962) Interpretation of the Composition and a Classifi-cation of the Chlorites. US Geology Survey Professional Paper, 414A. US Government Printing Office, Washington DC, 1-30.
|
[8]
|
Deer, W.A., Howie, R.A. and Iussman, J. (1962) Rock-Forming Minerals: Sheet Silicates. Longman, London, 270 p.
|
[9]
|
Wiewióra, A. and Weiss, Z. (1990) Crystallochemical Classifications of Phyllosilicates Based on the Unified System of Pro-jection of Chemical Composition: II. The Chlorite Group. Clay Minerals, 25, 83-92.
http://dx.doi.org/10.1180/claymin.1990.025.1.09
|
[10]
|
Zane, A. and Weiss, Z. (1998) A Procedure for Classifying Rock-Forming Chlorites Based on Microprobe Data. Rendiconti Lincei, 9, 51-56. http://dx.doi.org/10.1007/BF02904455
|
[11]
|
Hayes, J.B. (1970) Polytypism of Chlorite in Sedimentary Rocks. Clays and Clayminerals, 18, 285-306.
http://dx.doi.org/10.1346/CCMN.1970.0180507
|
[12]
|
Weaver, C.E., Highsmith, P.B. and Wampler, J.M. (1984) Chlorite: in Shale-Slate Metamorphism in the Southern Appalachians. Elsevier, Amsterdam, 99-139. http://dx.doi.org/10.1016/b978-0-444-42264-4.50010-4
|
[13]
|
Walker, J.R. (1989) Polytypism of Chlorite in Very Low Grade Metamorphic Rocks. American Mineralogist, 74, 738- 743.
|
[14]
|
Walker, J.R. (1993) Chlorite Polytype Geothermometry. Clays and Clay Minerals, 41, 260-260.
http://dx.doi.org/10.1346/CCMN.1993.0410212
|
[15]
|
Schmidt, D. and Livi, K.J.T. (1999) HRTEM and SAED Investigations of Polytypism, Stacking Disorder, Crystal Growth, and Vacancies in Chlorites from Subgreen Schist Facies Outcrops. American Mine-ralogist, 84, 160-170.
http://dx.doi.org/10.2138/am-1999-1-218
|
[16]
|
王勇生, 朱光, 刘国生. 糜棱岩化过程中绿泥石多型与结晶度的演变——以郯庐断裂带南段为例[J]. 矿物学报, 2004, 24(3): 271-277.
|
[17]
|
Bourdelle, F. and Cathelineau, M. (2015) Low-Temperature Chlorite Geothermometry: A Graphical Representation Based on a T-R2+–Si Diagram. European Journal of Mineralogy, 27, 617-626.
http://dx.doi.org/10.1127/ejm/2015/0027-2467
|
[18]
|
Walshe, J.L. (1986) A Six-Component Chlorite Solid Solution Model and the Conditions of Chlorite Formation in Hydrothermal and Geothermal Systems. Economic Geology, 81, 681-703. http://dx.doi.org/10.2113/gsecongeo.81.3.681
|
[19]
|
Hutcheon, I. (1990) Clay Carbonate Reactions in the Venture Area, Scotian Shelf, Nova Scotia, Canada. The Geochemical Society, Special Publication, 2, 199-212.
|
[20]
|
Vidal, O., Parra, T. and Trotet, F. (2001) A Thermodynamic Model for Fe-Mg Aluminous Chlorite Using Data from Phase Equilibrium Experiments and Natural Pelitic Assemblages in the 100 to 600 C, 1 to 25 kb Range. American Journal of Science, 301, 557-592. http://dx.doi.org/10.2475/ajs.301.6.557
|
[21]
|
Vidal, O., Parra, T. and Vieillard, P. (2005) Thermodynamic Properties of the Tschermak Solid Solution in Fe-Chlorite: Application to Natural Examples and Possible Role of Oxidation. American Mineralogist, 90, 347-358.
http://dx.doi.org/10.2138/am.2005.1554
|
[22]
|
Vidal, O., De Andrade, V., Lewin, E., et al. (2006) P-T-Deformation-Fe3+/Fe2+ Mapping at the Thin Section Scale and Comparison with XANES Mapping: Application to a Garnet-Bearing Metapelite from the Sambagawa Metamorphic Belt (Japan). Journal of Metamorphic Geology, 24, 669-683. http://dx.doi.org/10.1111/j.1525-1314.2006.00661.x
|
[23]
|
Lanari, P., Wagner, T. and Vidal, O. (2014) A Thermodynamic Model for Di-Trioctahedral Chlorite from Experimental and Natural Data in the System MgO-FeO-Al2O3-SiO2-H2O: Applications to P-T Sections and Geothermometry. Contributions to Mineralogy and Petrology, 167, 1-19. http://dx.doi.org/10.1007/s00410-014-0968-8
|
[24]
|
Battaglia, S. (1999) Applying X-Ray Geothermometer Diffraction to a Chlorite. Clays and Clay Minerals, 47, 54-63.
http://dx.doi.org/10.1346/CCMN.1999.0470106
|
[25]
|
Rae, A.J., O’Brien, J., Ramirez, E., et al. (2011) The Application of Chlo-rite Geothermometry to Hydrothermally Altered Rotokawa Andesite, Rotokawa Geothermal Field. NZ Geothermal Workshop, 33, 8.
|
[26]
|
Bryndzia, L.T. and Scott, S.D. (1987) The Composition of Chlorite as a Function of Sulfur and Oxygen Fugacity; An Expe-rimental Study. American Journal of Science, 287, 50-76. http://dx.doi.org/10.2475/ajs.287.1.50
|
[27]
|
Bailey, S.W. (1979) Report of the Clay Minerals Society Nomenclature Committee for 1977 and 1978. Clays & Clay Minerals, 27, 238-239. http://dx.doi.org/10.1346/CCMN.1979.0270310
|
[28]
|
Cathelineau, M. and Nieva, D. (1985) A Chlorite Solid Solution Geo-thermometer the Los Azufres (Mexico) Geothermal System. Contributions to Mineralogy and Petrology, 91, 235-244. http://dx.doi.org/10.1007/BF00413350
|
[29]
|
Bayliss, P. (1975) Nomenclature of the Trioctahedral Chlorites. Canadian Mine-ralogist, 13, 178-180.
|
[30]
|
Brown, B.E. and Bailey, S.W. (1963) Chlorite Polytypism: II. Crystal Structure of a One-Layer Cr-Chlorite. The American Minerakogist, 48, 41-62.
Bailey, S.W. (1988) X-Ray Diffraction Identification of the Polytypes of Mica, Serpentine, and Chlorite. Clays & Clay Minerals, 36, 193-213. http://dx.doi.org/10.1346/CCMN.1988.0360301
|
[31]
|
Karpova, G.V. (1969) Clay Mineral Post-Sedimentary Ranks in Terrigenous Rocks. Sedimentology, 13, 5-20.
http://dx.doi.org/10.1111/j.1365-3091.1969.tb01118.x
|
[32]
|
Kranidiotis, P. and MacLean, W.H. (1987) Systematics of Chlorite Alteration at the Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec. Economic Geology, 82, 1898-1911. http://dx.doi.org/10.2113/gsecongeo.82.7.1898
|
[33]
|
Cathelineau, M. (1988) Cation Site Occupancy in Chlorites and Illites as Function of Temperature. Clay Minerals, 23, 471-485. http://dx.doi.org/10.1180/claymin.1988.023.4.13
|
[34]
|
Jowett, E.C. (1991) Fitting Iron and Magnesium into the Hydrothermal Chlorite Geothermometer. GAC/MAC/SEG Joint Annual Meeting, Toronto, 27-29 May 1991, Program with Abstracts 16, A62.
|
[35]
|
Zang, W. and Fyfe, W.S. (1995) Chloritization of the Hydrothermally Altered Bedrock at the Igarapé Bahia Gold Deposit, Carajás, Brazil. Mineralium Deposita, 30, 30-38. http://dx.doi.org/10.1007/BF00208874
|
[36]
|
Xie, X., Byerly, G.R. and Ferrell, R.E. (1996) IIb Trioctahedral Chlorite from the Barberton Greenstone Belt: Crystal Structure and Rock Composition Constraints with Implications to Geothermometry. Contributions to Mineralogy & Petrology, 126, 275-291. http://dx.doi.org/10.1007/s004100050250
|
[37]
|
El-Sharkawy, M.F. (2000) Talc Mineralization of Ultramafic Affinity in the Eastern Desert of Egypt. Mineralium Deposita, 35, 346-363. http://dx.doi.org/10.1007/s001260050246
|
[38]
|
Rausell-Colom, J.A., Wiewiora, A. and Matesanz, E. (1991) Relation between Composition and d001 for Chlorite. American Mineralogist, 76, 1373-1379.
|
[39]
|
Nieto, F. (1997) Chemical Composition of Metapelitic Chlorites: X-Ray Diffraction and Optical Property Approach. European Journal of Mineralogy, 9, 829-842. http://dx.doi.org/10.1127/ejm/9/4/0829
|
[40]
|
王勇生, 朱光, 王道轩, 等. 地质温度计在郯庐断裂带南段低温糜棱岩中的尝试[J]. 中国地质, 2005, 32(4): 625- 633.
|
[41]
|
Котов, Н.В. (1975) Мускови-хдоритовый палеотермометр. Докл. АН СССР, Т. No. 3, 222-227.
|
[42]
|
Bourdelle, F., Parra, T., Beyssac, O., et al. (2013) Clay Minerals as Geo-Thermometer: A Comparative Study Based on High Spatial Resolution Analyses of Illite and Chlorite in Gulf Coast Sandstones (Texas, USA). American Mineralogist, 98, 914-926. http://dx.doi.org/10.2138/am.2013.4238
|
[43]
|
孙军刚, 李洪英, 刘晓煌, 等. 山西铜矿峪铜矿床绿泥石特征及其地质意义[J]. 矿物岩石地球化学通报, 2015(6): 1142-1154.
|
[44]
|
杨超, 唐菊兴, 宋俊龙, 等. 西藏拿若斑岩型铜(金)矿床绿泥石特征及地质意义[J]. 地质学报, 2015, 89(5): 856- 872.
|
[45]
|
Jiang, Y., Niu, H., Bao, Z., et al. (2014) Fluid Evolution of the Tong-kuangyu Porphyry Copper Deposit in the Zhongtiaoshan Region: Evidence from Fluid Inclusions. Ore Geology Reviews, 63, 498-509.
http://dx.doi.org/10.1016/j.oregeorev.2014.05.018
|
[46]
|
徐文炘, 郭新生, 冀树揩, 等. 铜矿峪铜矿床地球化学的研究[J]. 矿产与地质, 1995, 2(46): 77-86.
|
[47]
|
许庆林, 孙丰月, 张晗, 等. 山西中条山铜矿峪铜矿流体包裹体、锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报: 地球科学版, 2012(S3): 64-80.
|
[48]
|
Prouteau, G. and Scaillet, B. (2003) Experimental Con-straints on the Origin of the 1991 Pinatubo Dacite. Journal of Petrology, 44, 2203-2241. http://dx.doi.org/10.1093/petrology/egg075
|
[49]
|
Dora, M.L. and Randive, K.R. (2015) Chloritisation along the Thanewasna Shear Zone, Western Bastar Craton, Central India: Its Genetic Linkage to Cu-Au Mineralisation. Ore Geology Reviews, 70, 151-172.
http://dx.doi.org/10.1016/j.oregeorev.2015.03.018
|
[50]
|
Dyar, M.D., Guidotti, C.V., Harper, G.D., et al. (1992) Controls on Ferric Iron in Chlorite. Geological Society of America, Abstracts with Programs, 24, 7.
|
[51]
|
Chlorites, L.J. (1988) Metamorphic Petrology. Reviews in Mineralogy and Geochemistry, 19, 405-453.
|