AAM  >> Vol. 5 No. 3 (August 2016)

    四阶抛物型积分微分方程的H1-Galerkin混合元方法
    H1-Galerkin Mixed Element Method for Fourth-Order Parabolic Integro-Differential Equation

  • 全文下载: PDF(536KB) HTML   XML   PP.349-359   DOI: 10.12677/AAM.2016.53043  
  • 下载量: 208  浏览量: 357   国家自然科学基金支持

作者:  

李岩,侯雅馨:内蒙古大学数学科学学院,内蒙古 呼和浩特

关键词:
四阶抛物型积分微分方程H1-Galerkin混合有限元方法误差估计稳定性分析Fourth-Order Parabolic Integral Differential Equations H1-Galerkin Mixed Finite Element Method Error Estimation Stability Analysis

摘要:
本文讨论四阶抛物型积分微分方程的H1-Galerkin混合有限元方法,研究一维情形下带有四阶空间导数项的抛物型积分微分方程H1-Galerkin混合有限元数值方法。根据方程的特点,通过三个适当中间变量的引入,可将原四阶问题化为一个仅含有一阶导数的耦合方程组系统。对系统半离散和全离散格式的最优收敛误差估计给出详细的分析证明,并推导了全离散系统的稳定性结果。

In this paper, an H1-Galerkinmixed element method is considered for one-dimensional fourth-or- der integro-differential equation of parabolic type. According to the characteristics of the consi-dered equation, the three auxiliary variables are introduced, then the original fourth-order prob-lem can be split into the coupled system with first order derivative. Some optimal error estimates for both semi-and fully discrete scheme are proved and the stability for fully discrete system is also derived.

文章引用:
李岩, 侯雅馨. 四阶抛物型积分微分方程的H1-Galerkin混合元方法[J]. 应用数学进展, 2016, 5(3): 349-359. http://dx.doi.org/10.12677/AAM.2016.53043

参考文献

[1] Zhang, T. (2009) Finite Element Methods for Partial Integro-Differential- Equations. Chinese Science Press, Beijing.
[2] Jiang, Z.W. (1999) and Error Estimates for Mixed Methods For Integro-Differential Equations of Parabolic Type. Ma-thematical Modeling and Numerical Analysis, 33, 531-546.
http://dx.doi.org/10.1051/m2an:1999151
[3] Liu, Y., Li, H., Wang, J.F. and Gao, W. (2012) A New Positive Definite Expanded Mixed Element Method for Parabolic Integro-Differential Equation. Journal of Applied Mathematics, 2012, Article ID: 391372.
[4] Liu, Y., Fang, Z.C., Li, H., He, S. and Gao, W. (2015) A New Expanded Mixed Method for Parabolic Integro-Diffe- rential Equations. Applied Mathematics and Computation, 259, 600-613.
http://dx.doi.org/10.1016/j.amc.2015.02.081
[5] Guo, H. (2012) A Splitting Positive Definite Mixed Finite Element Method for Two Classes of Integro-Differential Equations. Journal of Applied Mathematics and Computing, 39, 271-301.
http://dx.doi.org/10.1007/s12190-011-0527-7
[6] Zhu, A.L., Xu, T.T. and Xu, Q. (2016) Weak Galerkin Finite Element methods for Linear Parabolic Integro-Differen- tial Equations. Numerical Methods for Partial Differential Equations, 32, 1357-1377.
http://dx.doi.org/10.1002/num.22053
[7] Guo, H. and Rui, H. (2006) Crank-Nicolson Least-Squares Galerkin Procedures for Parabolic Integro-Differential Equations. Applied Mathematics and Computation, 180, 622-634.
http://dx.doi.org/10.1016/j.amc.2005.12.047
[8] 李宏, 王焕清. 半线性抛物型积分微分方程的间断时空有限元方法[J]. 计算数学, 2006, 28(3): 293-308.
[9] 何斯日古楞, 李宏, 刘洋. 发展型积分微分方程的时间间断时空有限元方法[J]. 数学进展, 2011, 40(5): 513-530.
[10] 李宏, 刘洋. 一类四阶抛物型积分–微分方程的混合间断时空有限元法[J]. 计算数学, 2007, 29(4): 413-420.
[11] 丛美琴, 杨青. 一类四阶抛物型积分–微分方程的混合有限体积方法[J]. 科学技术与工程, 11(23): 5502-5506.
[12] Pani, A.K. (1998) An H1-Galerkin Mixed Finite Element Method for Parabolic Partial Equations. SIAM Journal on Numerical Analysis, 35, 712-727.
http://dx.doi.org/10.1137/S0036142995280808
[13] 郭玲, 陈焕祯. Sobolev方程的H1-Galerkin混合有限元方法[J]. 系统科学与数学, 2006, 26(3): 301-314.
[14] 王瑞文. 双曲型积分微分方程的H1-Galerkin混合有限元方法误差估计[J]. 计算数学, 2006, 28(1): 19-30.
[15] 陈红斌, 徐大. 非线性抛物型偏积分微分方程的H1-Galerkin混合有限元方法[J]. 应用数学学报, 2008, 31(4): 702-712.
[16] Liu, Y. and Li, H. (2009) H1-Galerkin Mixed Finite Element Methods for Pseudo-Hyperbolic Equations. Applied Mathematics and Computation, 212, 446-457.
http://dx.doi.org/10.1016/j.amc.2009.02.039
[17] Liu, Y., Li, H. and Wang, J.F. (2009) Error Estimates of H1-Galerkin Mixed Finite Element Method for Schrodinger Equation. Applied Mathematics—A Journal of Chinese Universities, 24, 83-89.
http://dx.doi.org/10.1007/s11766-009-1782-3
[18] Zhou, Z.J. (2010) An H1-Galerkin Mixed Finite Element Method for a Class of Heat Transport Equations. Applied Mathematical Modelling, 34, 2414-2425.
http://dx.doi.org/10.1016/j.apm.2009.11.007
[19] Liu, Y., Li, H., Du, Y.W. and Wang, J.F. (2013) Explicit Multi-Step Mixed Finite Element Method for RLW Equation. Abstract and Applied Analysis, 2013, Article ID: 768976.
[20] 石东洋, 唐启立, 董晓靖. 强阻尼波动方程的H1-Galerkin混合有限元超收敛分析[J]. 计算数学, 2012, 34(3): 317- 328.
[21] Liu, Y., Li, H., He, S., Gao, W. and Mu, S. (2013) A New Mixed Scheme Based on Variation of Constants for Sobolev Equation with Nonlinear Convection Term. Applied Mathematics—A Journal of Chinese Universities, 28, 158-172.
http://dx.doi.org/10.1007/s11766-013-2939-7
[22] Yu H, Sun T J, Li N. (2015) The Time Discontinuous H1-Galerkin Mixed Finite Element Method for Linear Sobolev Equations. Discrete Dynamics in Nature and Society, 2015, Article ID: 618258.
[23] 刘洋, 李宏. 偏微分方程的非标准混合有限元方法[M]. 北京: 国防工业出版社, 2015.
[24] 刘洋, 李宏. 四阶强阻尼波方程的新混合元方法[J]. 计算数学, 2010, 32(2): 157-170.
[25] 刘洋, 李宏, 何斯日古楞, 高巍, 方志朝. 四阶偏抛物方程的H1-Galerkin混合元方法及数值模拟[J]. 计算数学, 2012, 34(3): 259-274.