AAM  >> Vol. 5 No. 3 (August 2016)

    (2 + 1)-维K-P方程精确解的研究
    Study on Exact Solutions of (2 + 1)-Dimensional K-P Equation

  • 全文下载: PDF(559KB) HTML   XML   PP.450-454   DOI: 10.12677/AAM.2016.53056  
  • 下载量: 213  浏览量: 255  

作者:  

卫慧芳:云南财经大学统计与数学学院,昆明,云南

关键词:
动力系统孤立波解K-P方程Dynamical Systems Sharp Wave Solution K-P Equation

摘要:
本文主要采用动力系统方法对(2 + 1)维Kadmotsev and Petviashvili (KP)方程进行研究,通过引入行波变换,将原(2 + 1)维K-P方程转化为常微分方程组。之后,对这个方程组的奇点,对应的分支和相图进行分析。最后,运用Maple软件求得用原方程的解,包括尖波解,周期波解。

In this paper, we mainly use the dynamical systems method to solve the (2 + 1) dimensional KP equation. By introducing the traveling wave transformation, the original (2 + 1) dimensional KP equation is transformed into ordinary differential equations. After that, we analyze the singular points, the corresponding bifurcation and phase diagram of the system. Finally, the solution of the original equation is obtained by using the Maple software, including the sharp wave solutions and periodic wave solutions.

文章引用:
卫慧芳. (2 + 1)-维K-P方程精确解的研究[J]. 应用数学进展, 2016, 5(3): 450-454. http://dx.doi.org/10.12677/AAM.2016.53056

参考文献

[1] 唐晓芬. 非线性偏微分方程的几类求解方法[D]: [硕士学位论文]. 镇江: 江苏大学, 2009.
[2] Bilige, S. and Chaolu, T. (2011) A Generalized (G’/G)-Expansion Method and Its Applications. Journal of Mongolia University Natural Science Edition, 1, 15-37.
[3] 徐振民. 推广的Tanh-函数法及其应用[J]. 广西民族大学学报(自然科学版), 2009, 3(15): 54-56.
[4] 刘涛立. F-展开法研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2004.
[5] 闵迪. 非线性发展方程的求解与达布变换[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2010.
[6] 杨攀攀. 齐次平衡法和非线性偏微分方程的孤立波解[D]: [硕士学位论文]. 南京: 南京理工大学, 2008.
[7] Li, J.B. (2013) Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions. Science Press, Beijing, 1-70.
[8] 杨翠平. (3+1)维KP方程的N-孤子解[J]. 湖北广播电视大学学报, 2010, 12(30): 160-162.
[9] 傅海明, 戴正德. (3+1)维K-P方程的周期波解[J]. 山西大学学报(自然科学报), 2010, 33(1): 4-7.