[1]
|
Y. N. He. The euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data. Mathematics of Computation, 2008, 77(264): 2097-2124.
|
[2]
|
L. G. Davis, F. Pahlevani. Semi-implicit schemes for transient Navier-Stokes equations and eddy viscosity models. Wiley InterScience, 2007: 1-20.
|
[3]
|
J. Li, Y. He and Z. Chen. A new stabilized finite element method for the transient Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2007, 197(1-4): 22-35.
|
[4]
|
R. Temam. Navier-Stokes equations and nonlinear functional analysis. 2nd Edition, Philadelphia: SIAM, 1995.
|
[5]
|
W. Layton, L. Tobiska. A two-level method with backtrackking for the Navier-Stokes equations. SIAM Journal on Numerical Analysis, 1998, 35(5): 2035-2054.
|
[6]
|
V. Girault, P. A. Raviart. Finite element method for Navier-Stokes equations: Theory and algorithms. Berlin, Heidelberg: Springer-Verlag, 1987.
|
[7]
|
M. Crouzeix, P. Raviart. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. ESAIM: Mathematical Modelling and Numerical Analysis, 1973, 7(R3): 33-75.
|
[8]
|
A. Quarteroni, A. Valli. Numerical approximation of partial differential equations. Berlin: Springer-Verlag, 1997.
|
[9]
|
T. J. R. Hughes, A. N. Brooks. A multi-dimensional up-wind scheme with no crosswind Diffusion. In: T. J. R. Hughes, Ed., Finite element methods for convection domination flows. ASME Monograph AMD-34, 1979: 19-35.
|
[10]
|
J.-L. Guermond. Stabilization of Galerkin approximation of transport equations by subgrid modeling. Mathematical Modelling and Numerical Analysis, 1999, 33(6): 1293-1316.
|
[11]
|
W. Layton. A connection between subgrid scale eddy viscosity and mixed methods. Applied Mathematics and Computation, 2002, 133(1): 147-157.
|
[12]
|
V. John, S. Kaya. A finite element variational multiscale method for the Navier-Stokes equations. SIAM Journal on Scientific Computing, 2005, 26(5): 1485-1503.
|
[13]
|
V. John, S. Kaya. Finite element error analysis of a variational multiscale method for the Navier-Stokes equations. Advances in Computational Mathematics, 2008, 28: 43-61.
|
[14]
|
S. Kaya, B. Riviere. A discontinuous subgrid eddy viscosity method for the time-dependent Navier-Stokes equations. SIAM Journal on Numerical Analysis, 2005, 43(4): 1572-1595.
|
[15]
|
S. Kaya, W. Layton. Subgrid-scale eddy viscosity methods are variational multiscale method. Tech. Report TR-MATH 03-05, University of Pittsburgh, 2003.
|
[16]
|
J. G. Heywood, R. Rannacher. Finite-element approximations of the nonstationary Navier-Stokes problem, Part I: Regularity of solutions and second-order spatial discretization. SIAM Journal on Numerical Analysis, 1982, 19(2): 275-311.
|
[17]
|
R. Temam. Navier-Stokes equations: Theory and numerical analysis. 3rd Edition, Amsterdam: North-Holland, 1983.
|
[18]
|
王烈衡, 许学军. 有限元方法的数学基础[M]. 北京: 科学出版社, 2004.
|
[19]
|
V. John, J. Maubach and L. Tobiska. Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems. Numerische Mathematik, 1997, 78: 165-188.
|
[20]
|
Z. Cai, J. Douglas Jr. and X. Ye. A stable nonconforming quadric-lateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo, 1999, 36: 215-232.
|