AAM  >> Vol. 1 No. 1 (August 2012)

    一类考虑接种的结核病模型的稳定性分析
    Dynamics of a TB Model with Vaccination

  • 全文下载: PDF(275KB) HTML    PP.1-11   DOI: 10.12677/AAM.2012.11001  
  • 下载量: 1,959  浏览量: 7,378   科研立项经费支持

作者:  

陈娜,周义仓:西安交通大学数学与统计学院,西安

关键词:
结核病模型接种Lyapunov函数全局渐近稳定一致持续TB Model; Vaccination; Lyapunov Function; Globally Asymptotically Stable; Uniformly Persistent

摘要:
 本文研究一类考虑接种的结核病模型解的稳定性,定义了模型的基本再生数。通过构造Lyapunov函数,证明了当时无病平衡点是全局稳定的;利用一致持续理论,证明了当时疾病将一直存在下去;也证明了在一定条件下唯一的地方平衡点是全局渐近稳定的。最后通过数值模拟比较了不同的接种情况对结核传播的影响。

 We establish and study a TB model with vaccination. The basic reproduction number  is defined. It is proved that the disease-free equilibrium is globally asymptotically stable when  by Lyapunov function. The disease is uniformly persistent when  by using uniformly persistent theory. We also prove that the unique endemic equilibrium is globally asymptotically stable under certain conditions. Finally, we compare the influence of vaccination on the spread of tuberculosis by numerical simulations.

文章引用:
陈娜, 周义仓. 一类考虑接种的结核病模型的稳定性分析[J]. 应用数学进展, 2012, 1(1): 1-11. http://dx.doi.org/10.12677/AAM.2012.11001

参考文献

[1] 马玙, 朱莉贞, 潘毓萱. 结核病[M]. 人民卫生出版社, 2009: 33-41.
[2] WHO. Global tuberculosis control. WHO Report. Geneva: World Health Organization, 2011.
[3] S. M. Blower, A. R. Mclean, T. C. Porco, et al. The intrinsic transmission dynamics of tuberculosis epidemics. Nature Medicine, 1995, 1(8): 815-821.
[4] T. C. Proco. Quantifying the intrinsic transmission dynamics of tuberculosis. Theoretical Population Biology, 1998, 54(2): 117-132.
[5] T. Lietman, S. M. Blower. Potential impact of tuberculosis vaccines as epidemic control agents. Clinical Infectious Diseases, 2000, 30(2): 316-322.
[6] E. Ziv, C. L. Daley and S. Blower. Potential public health impact of new tuberculosis vaccines. Emerging Infectious Diseases, 2004, 10(9): 1529-1535.
[7] 王真行, 史久华. 卡介苗在免疫规划中的应用. 国外医学(预防、诊断、治疗用生物制品分册)[J]. 2001, 24(5): 204-206.
[8] P. Van den Driessche, J. Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 2002, 180: 29-48.
[9] 马知恩, 周义仓. 常微分方程定性与稳定性方法[M]. 北京: 科学出版社, 2001: 3-9.
[10] H. R. Thieme. Persistence under relaxed point-dissipativity (with application to an epidemic model). Society for Industrial and Applied Mathematics, 1993, 24(2): 407-435.
[11] H. L. Smith, P. E. Walman. The theory of the chemostat: Dynamics of microbial competition. Cambridge University Press, 1995: 261-268.