AAM  >> Vol. 1 No. 1 (August 2012)

    求解随机广义互补问题的期望残差最小化方法
    Expected Residual Minimization Method for Stochastic Generalized Complementary Problems

  • 全文下载: PDF(170KB) HTML    PP.12-17   DOI: 10.12677/AAM.2012.11002  
  • 下载量: 1,771  浏览量: 7,855  

作者:  

罗美菊:辽宁大学数学院,沈阳;
吴欧:中国人民解放军理工大学理学院,南京

关键词:
随机广义互补问题NCP函数期望残差最小化方法拟蒙特卡罗方法Stochastic Generalized Complementary Problems; NCP Function; Expected Residual Minimization Method; Quasi-Monte Carlo Method

摘要:
由于广义互补问题有着广泛的应用,并且在实际应用中存在很多不确定因素。因此,本文主要考虑随机广义互补问题。通过所谓的NCP函数给出它的期望残差最小化(ERM)模型。由于所给出的ERM模型中含有一个积分计算。一般情况下,积分计算很难得到精确值。因此,本文引入拟蒙特卡罗方法,并用此方法给出ERM问题的近似问题。进一步,证明了在一定条件下,由ERM问题的近似问题得到的解的序列收敛到ERM问题的解。

 In practice, generalized complementary problems have many applications and many elements may involve uncertain data in applications. Therefore, we mainly consider the stochastic generalized complementary problems. We employ the so called NCP function to give the expected residual minimization (ERM) model. Since the ERM formulation includes an integration, which is generally difficult to evaluate exactly, we propose the quasi-Monte Carlo method to give an approximation problem for ERM formulation. Furthermore, we show that the solutions of this approximation problem converge to the solution of the ERM formulation under very mild conditions.

文章引用:
罗美菊, 吴欧. 求解随机广义互补问题的期望残差最小化方法[J]. 应用数学进展, 2012, 1(1): 12-17. http://dx.doi.org/10.12677/AAM.2012.11002

参考文献

[1] S. V. Karamardian. Generalized complementarity problem. Journal of Optimization Theory and Applications, 1967, 8: 161-167.
[2] F. Facchinei, J. S. Pang. Finite-dimensional variational inequalities and complementarity problems. New York: Springer, 2003.
[3] X. J. Chen, M. Fukushima. Expected residual minimization method for stochastic linear complementarity problems. Mathematics of Operations Research, 2005, 30(4): 1022-1038.
[4] H. Fang, X. J. Chen and M. Fukushima. Stochastic R0 matrix linear complementarity problems. SIAM Journal on Optimization, 2007, 18(2): 482-506.
[5] X. J. Chen, C. Zhang and M. Fukushima. Robust solution of monotone stochastic linear complementarity problems. Mathematical Programming, 2009, 117(1): 51-80.
[6] G. L. Zhou, L. Caccetta. Feasible semismooth Newton method for a class of stochastic linear complementarity problems. Journal of Optimization Theory and Applications, 2008, 139(2): 379-392.
[7] C. Zhang, X. J. Chen. Smoothing projected gradient method and its application to stochastic linear complementarity problems. SIAM Journal on Optimization, 2009, 20(2): 627-649.
[8] 雷桂媛. 关于蒙特卡罗及拟蒙特卡罗方法的若干研究[D]. 浙江大学, 2003.
[9] 韩婷. 利用NCP函数求解不等式约束优化问题的KKT系统[D]. 北京工业大学, 2007.
[10] 韩继业, 戚厚铎. 非线性互补理论与算法[M]. 上海: 上海科学出版社, 2006: 1.
[11] P. Tseng. Growth behavior of a class of merit functions for the nonlinear complementarity problem. Journal of Optimization Theory and Applications, 1996, 89(1): 17-37.
[12] J. R. Birge. Quasi-Monte Carlo approaches to option pricing. Department of Industrial and Operations Engineering, University of Michigan, 1994.
[13] X. Chen, M. Fukushima. Expected residual minimization method for stochastic linear complementarity problems. Mathematics of Operations Research, 2005, 30(4): 1022-1038.
[14] C. Zhang, X. Chen. Stochastic nonlinear complementarity problem and applications to Trafic equilibrium under uncertainty. Journal of Optimization Theory and Applications, 2008, 137(2): 277-295.