AAC  >> Vol. 2 No. 3 (August 2012)

    基于电沉积碳酸钙–壳聚糖复合纳米材料的电化学生物传感器的应用研究
    The Applied Research of Electrochemical Biosensor Based on Electrodeposited CaCO3-Chitosan Composite Nanomaterials

  • 全文下载: PDF(853KB) HTML    PP.15-20   DOI: 10.12677/AAC.2012.23003  
  • 下载量: 2,742  浏览量: 14,261  

作者:  

赵红叶,乔丽云,魏俊平:内蒙古石油化学工业检验测试所

关键词:
复合纳米材料电沉积蛋白质(酶)生物传感器Nanocomposite; Electrodeposition; Protein (Enzyme); Biosensor

摘要:
本文基于碳酸钙–壳聚糖复合纳米材料构建了电化学生物传感器,采用循环伏安法、电化学阻抗法、计时安培法及扫描电镜技术对其进行了表征,研究了氧化还原蛋白质(酶)的直接电化学和电催化特性,建立了检测H2O2的新方法。该研究丰富了生物电分析化学的研究内容,拓展了复合纳米材料的应用范围。

In this paper, a novel electrochemical biosensor was fabricated based on CaCO3-chitosan composite nano- materials, which was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, chronoamperome- try and scanning electron microscopy. The electrochemical behaviors of redox protein (enzyme) were studied in details and the new methods for determination of H2O2 were developed. These studies enriched the study of biological electro- analytical chemistry, expanding the scope of the application of nanocomposites.

文章引用:
赵红叶, 乔丽云, 魏俊平. 基于电沉积碳酸钙–壳聚糖复合纳米材料的电化学生物传感器的应用研究[J]. 分析化学进展, 2012, 2(3): 15-20. http://dx.doi.org/10.12677/AAC.2012.23003

参考文献

[1] M. Diaconu, S. C. Litescu and G. L. Radu. Laccase-MWCNT- chitosan biosensor—A new tool for total polyphenolic content evaluation from in vitro cultivated plants. Sensors and Actuators B, 2010, 145(2): 800-806.
[2] F. Li, Z. Wang, W. Chen and S. S. Zhang. A simple strategy for one-step construction of bienzyme biosensor by in-situ forma- tion of biocomposite film through electrodeposition. Biosensors and Bioelectronics, 2009, 24(10): 3030-3035.
[3] J. M. Gong, L. Y. Wang, K. Zhao and D. D. Song. One-step fabrication of chitosan-hematite nanotubes composite film and its biosensing for hydrogen peroxide. Electrochemistry Commu- nications, 2008, 10(1): 123-126.
[4] X. L. Luo, J. J. Xu, Y. Du and H. Y. Chen. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocom- posite formed by one-step electrodeposition. Analytical Bio- chemistry, 2004, 334(2): 284-289.
[5] D. Shan, S. X. Wang, H. G. Xue and S. Cosnier. Direct electro- chemistry and electrocatalysis of hemoglobin entrapped in com- posite matrix based on chitosan and CaCO3 nanoparticles. Elec- trochemistry Communications, 2007, 9: 529-534.
[6] W. Sun, R. F. Gao and K. Jiao. Electrochemistry and electrocatalysis of hemoglobin in Nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode. The Journal of Physical Chemistry B, 2007, 111(17): 4560-4567.
[7] Y. Du, X. L. Luo, J. J. Xu and H. Y. Chen. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry, 2007, 70(2): 342-347.
[8] J. D. Qiu, R. Wang, R. P. Liang and X. H. Xia. Electrochemi- cally deposited nanocomposite film of CS-Fc/Au NPs/GOx for glucose biosensor application. Biosensors and Bioelectronics, 2009, 24(4): 2920-2925.
[9] Y. H. Bai, H. Zhang, J. J. Xu and H. Y. Chen. Relationship be- tween nanostructure and electrochemical/biosensing properties of MnO2 nanomaterials for H2O2/Choline. Journal of Physical Chemistry C, 2008, 112(48): 18984-18990.
[10] S. George, K. Lee. Direct electrochemistry and electrocatalysis of hemoglobin in nafion/carbon nanochip film on glassy carbon electrode. Journal of Physical Chemistry B, 2009, 113(47): 15445- 15454.
[11] C. Y. Wang, C. Y. He, Z. Tong, X. X. Liu, B. Y. Ren and F. Zeng. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery. International Journal of Pharmaceutics, 2006, 308(1-2): 160-167.
[12] W. Y. Cai, Q. Xu, X. N. Zhao, J. J. Zhu and H. Y. Chen. Porous gold-nanoparticle-CaCO3 hybrid material: Preparation, charac- terization, and application for horseradish peroxidase assembly and direct electrochemistry. Chemistry of Materials, 2006, 18: 279- 284.
[13] D. S. Tsekova, B. Escuder and J. F. Miravet. Solid-state poly- morphic transition and solvent-free self-assembly in the growth of organic crystalline microfibers. Crystal Growth & Design, 2008, 8(1): 11-13.
[14] Z. Dai, H. Bai and M. Hong. A novel nitrite biosensor based on the direct electron transfer of hemoglobin immobilized on CdS hollow nanospheres. Biosensors and Bioelectronics, 2008, 23(12): 1869-1873.
[15] J. Feng, G. Zhao and J. Xu. Direct electrochemistry and electro- catalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Analytical Biochemistry, 2005, 342(2): 280- 286.
[16] L. Wang, E. Wang. Direct electron transfer between cytochrome C and a gold nanoparticles modified electrode. Electrochemistry Communications, 2004, 6(1): 49-54.
[17] M. K. Wang, Y. Shen and Y. Liu. Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes. Journal of Electroanalytical Chemistry, 2005, 578(1): 121-127.
[18] W. Sun, R. F. Gao, X. Q. Li, D. D. Wang, M. X. Yang and K. Jiao. Fabrication and electrochemical behavior of hemoglobin modified carbon ionic liquid electrode. Electroanalysis, 2008, 20(10): 1048-1054.
[19] D. Shan, S. X. Wang, H. G. Xue and S. Cosnier. Direct electro- chemistry and electrocatalysis of hemoglobin entrapped in com- posite matrix based on chitosan and CaCO3 nanoparticles. Elec- trochemistry Communications, 2007, 9: 529-534.
[20] Y. H. Zhang, X. Chen and W. S. Yang. Direct electrochemistry and electrocatalysis of myoglobin immobilized in zirconium phosphate nanosheets film. Sensors and Actuators, B: Chemical, 2008, B130(2): 682-688.
[21] E. Laviron. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical sys- tems. Journal of Electroanalytical Chemistry and Interfacial Elec- trochemistry, 1979, 101(1): 19-28.
[22] Y. L. Wen, X. D. Yang, G. H. Hu, S. H. Chen and N. Q. Jia. Direct electrochemistry and biocatalytic activity of hemoglobin entrapped into gellan gum and room temperature ionic liquid composite system. Electrochimica Acta, 2008, 54(2): 744-748.
[23] Y. D. Zhao, Y. H. Bi, W. D. Zhang and Q. M. Luo. The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2. Talanta, 2005, 65(2): 489-494.
[24] H. Y. Ma, N. F. Hu and J. F. Rusling. Electroactive myoglobin films grown layer-by-layer with poly(styrenesulfonate) on pyro- lytic graphite electrodes. Langmuir, 2000, 16(11): 4969-4975.
[25] W. Sun, R. F. Gao and K. Jiao. Electrochemistry and electro- catalysis of a Nafion/nano-CaCO3/Hb film modified carbon ionic liquid electrode using BMIMPF6 as binder. Electroanalysis, 2007, 19(13): 1368-1374.
[26] A. A. Karyakin, E. A. Puganova, I. A. Budashov, I. N. Ku- rochkin, E. E. Karyakina, V. A. Levchenko, V. N. Matveyenko and S. D. Varfolomeyev. Prussian blue based nanoelectrode ar- rays for H2O2 detection. Analytical Chemistry. Analytical Chemis- try, 2004, 76(2): 474-478.
[27] D. Moscone, D. D’Ottavi, D. Compagnone, G. Palleschi and A. Amine. Construction and analytical characterization of Prussian blue-based carbon paste electrodes and their assembly as oxi- dase enzyme sensors. Analytical Chemistry, 2001, 73(11): 2529- 2535.
[28] A. A. Karyakin, E. K. Elena and Lo. Gorton. Am-perometric biosensor for glutamate using Prussian blue-based “artificial per- oxidase” as a transducer for hydrogen peroxide. Analytical Chem- istry, 2000, 72(7): 1720-1723.
[29] F. Ricci, A. Amine, G. Palleschi and D. Moscone. Prussian blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosensors & Bioelectronics, 2003, 18(2-3): 165-174.
[30] R. A. Kamin, G. S. Wilson. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the im- mobilized enzyme layer. Analytical Chemistry, 1980, 52(8): 1198- 2005.
[31] C. H. Fan, H. Y. Wang, S. Sun, D. X. Zhu, G. Wagner and G. X. Li. Electron-transfer reactivity and enzymatic activity of hemo- globin in a SP sephadex membrane. Analytical Chemistry, 2001, 73(13): 2850-2854.
[32] J. J. Feng, G. Zhao, J. J. Xu and H. Y. Chen. Direct electrochem- istry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Analytical Biochemistry, 2005, 342(2): 280-286.