|
[1]
|
M. Diaconu, S. C. Litescu and G. L. Radu. Laccase-MWCNT- chitosan biosensor—A new tool for total polyphenolic content evaluation from in vitro cultivated plants. Sensors and Actuators B, 2010, 145(2): 800-806.
|
|
[2]
|
F. Li, Z. Wang, W. Chen and S. S. Zhang. A simple strategy for one-step construction of bienzyme biosensor by in-situ forma- tion of biocomposite film through electrodeposition. Biosensors and Bioelectronics, 2009, 24(10): 3030-3035.
|
|
[3]
|
J. M. Gong, L. Y. Wang, K. Zhao and D. D. Song. One-step fabrication of chitosan-hematite nanotubes composite film and its biosensing for hydrogen peroxide. Electrochemistry Commu- nications, 2008, 10(1): 123-126.
|
|
[4]
|
X. L. Luo, J. J. Xu, Y. Du and H. Y. Chen. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocom- posite formed by one-step electrodeposition. Analytical Bio- chemistry, 2004, 334(2): 284-289.
|
|
[5]
|
D. Shan, S. X. Wang, H. G. Xue and S. Cosnier. Direct electro- chemistry and electrocatalysis of hemoglobin entrapped in com- posite matrix based on chitosan and CaCO3 nanoparticles. Elec- trochemistry Communications, 2007, 9: 529-534.
|
|
[6]
|
W. Sun, R. F. Gao and K. Jiao. Electrochemistry and electrocatalysis of hemoglobin in Nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode. The Journal of Physical Chemistry B, 2007, 111(17): 4560-4567.
|
|
[7]
|
Y. Du, X. L. Luo, J. J. Xu and H. Y. Chen. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry, 2007, 70(2): 342-347.
|
|
[8]
|
J. D. Qiu, R. Wang, R. P. Liang and X. H. Xia. Electrochemi- cally deposited nanocomposite film of CS-Fc/Au NPs/GOx for glucose biosensor application. Biosensors and Bioelectronics, 2009, 24(4): 2920-2925.
|
|
[9]
|
Y. H. Bai, H. Zhang, J. J. Xu and H. Y. Chen. Relationship be- tween nanostructure and electrochemical/biosensing properties of MnO2 nanomaterials for H2O2/Choline. Journal of Physical Chemistry C, 2008, 112(48): 18984-18990.
|
|
[10]
|
S. George, K. Lee. Direct electrochemistry and electrocatalysis of hemoglobin in nafion/carbon nanochip film on glassy carbon electrode. Journal of Physical Chemistry B, 2009, 113(47): 15445- 15454.
|
|
[11]
|
C. Y. Wang, C. Y. He, Z. Tong, X. X. Liu, B. Y. Ren and F. Zeng. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery. International Journal of Pharmaceutics, 2006, 308(1-2): 160-167.
|
|
[12]
|
W. Y. Cai, Q. Xu, X. N. Zhao, J. J. Zhu and H. Y. Chen. Porous gold-nanoparticle-CaCO3 hybrid material: Preparation, charac- terization, and application for horseradish peroxidase assembly and direct electrochemistry. Chemistry of Materials, 2006, 18: 279- 284.
|
|
[13]
|
D. S. Tsekova, B. Escuder and J. F. Miravet. Solid-state poly- morphic transition and solvent-free self-assembly in the growth of organic crystalline microfibers. Crystal Growth & Design, 2008, 8(1): 11-13.
|
|
[14]
|
Z. Dai, H. Bai and M. Hong. A novel nitrite biosensor based on the direct electron transfer of hemoglobin immobilized on CdS hollow nanospheres. Biosensors and Bioelectronics, 2008, 23(12): 1869-1873.
|
|
[15]
|
J. Feng, G. Zhao and J. Xu. Direct electrochemistry and electro- catalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Analytical Biochemistry, 2005, 342(2): 280- 286.
|
|
[16]
|
L. Wang, E. Wang. Direct electron transfer between cytochrome C and a gold nanoparticles modified electrode. Electrochemistry Communications, 2004, 6(1): 49-54.
|
|
[17]
|
M. K. Wang, Y. Shen and Y. Liu. Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes. Journal of Electroanalytical Chemistry, 2005, 578(1): 121-127.
|
|
[18]
|
W. Sun, R. F. Gao, X. Q. Li, D. D. Wang, M. X. Yang and K. Jiao. Fabrication and electrochemical behavior of hemoglobin modified carbon ionic liquid electrode. Electroanalysis, 2008, 20(10): 1048-1054.
|
|
[19]
|
D. Shan, S. X. Wang, H. G. Xue and S. Cosnier. Direct electro- chemistry and electrocatalysis of hemoglobin entrapped in com- posite matrix based on chitosan and CaCO3 nanoparticles. Elec- trochemistry Communications, 2007, 9: 529-534.
|
|
[20]
|
Y. H. Zhang, X. Chen and W. S. Yang. Direct electrochemistry and electrocatalysis of myoglobin immobilized in zirconium phosphate nanosheets film. Sensors and Actuators, B: Chemical, 2008, B130(2): 682-688.
|
|
[21]
|
E. Laviron. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical sys- tems. Journal of Electroanalytical Chemistry and Interfacial Elec- trochemistry, 1979, 101(1): 19-28.
|
|
[22]
|
Y. L. Wen, X. D. Yang, G. H. Hu, S. H. Chen and N. Q. Jia. Direct electrochemistry and biocatalytic activity of hemoglobin entrapped into gellan gum and room temperature ionic liquid composite system. Electrochimica Acta, 2008, 54(2): 744-748.
|
|
[23]
|
Y. D. Zhao, Y. H. Bi, W. D. Zhang and Q. M. Luo. The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2. Talanta, 2005, 65(2): 489-494.
|
|
[24]
|
H. Y. Ma, N. F. Hu and J. F. Rusling. Electroactive myoglobin films grown layer-by-layer with poly(styrenesulfonate) on pyro- lytic graphite electrodes. Langmuir, 2000, 16(11): 4969-4975.
|
|
[25]
|
W. Sun, R. F. Gao and K. Jiao. Electrochemistry and electro- catalysis of a Nafion/nano-CaCO3/Hb film modified carbon ionic liquid electrode using BMIMPF6 as binder. Electroanalysis, 2007, 19(13): 1368-1374.
|
|
[26]
|
A. A. Karyakin, E. A. Puganova, I. A. Budashov, I. N. Ku- rochkin, E. E. Karyakina, V. A. Levchenko, V. N. Matveyenko and S. D. Varfolomeyev. Prussian blue based nanoelectrode ar- rays for H2O2 detection. Analytical Chemistry. Analytical Chemis- try, 2004, 76(2): 474-478.
|
|
[27]
|
D. Moscone, D. D’Ottavi, D. Compagnone, G. Palleschi and A. Amine. Construction and analytical characterization of Prussian blue-based carbon paste electrodes and their assembly as oxi- dase enzyme sensors. Analytical Chemistry, 2001, 73(11): 2529- 2535.
|
|
[28]
|
A. A. Karyakin, E. K. Elena and Lo. Gorton. Am-perometric biosensor for glutamate using Prussian blue-based “artificial per- oxidase” as a transducer for hydrogen peroxide. Analytical Chem- istry, 2000, 72(7): 1720-1723.
|
|
[29]
|
F. Ricci, A. Amine, G. Palleschi and D. Moscone. Prussian blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosensors & Bioelectronics, 2003, 18(2-3): 165-174.
|
|
[30]
|
R. A. Kamin, G. S. Wilson. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the im- mobilized enzyme layer. Analytical Chemistry, 1980, 52(8): 1198- 2005.
|
|
[31]
|
C. H. Fan, H. Y. Wang, S. Sun, D. X. Zhu, G. Wagner and G. X. Li. Electron-transfer reactivity and enzymatic activity of hemo- globin in a SP sephadex membrane. Analytical Chemistry, 2001, 73(13): 2850-2854.
|
|
[32]
|
J. J. Feng, G. Zhao, J. J. Xu and H. Y. Chen. Direct electrochem- istry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Analytical Biochemistry, 2005, 342(2): 280-286.
|