AIRR  >> Vol. 2 No. 1 (February 2013)

    智能制造系统协调方法研究进展
    Research Progress on Coordination Method for Intelligent Manufacturing System

  • 全文下载: PDF(206KB) HTML   XML   PP.29-34   DOI: 10.12677/AIRR.2013.21005  
  • 下载量: 1,726  浏览量: 10,683   国家自然科学基金支持

作者:  

王 雷:先进数控和伺服驱动技术安徽省重点实验室,芜湖;
康与云:临沂大学机械工程学院,临沂

关键词:
智能制造系统协调机制协调方法动态协调Intelligent Manufacturing System; Coordination Mechanism; Coordination Method; Dynamic Coordination

摘要:

动态多变的制造系统环境中,良好的协调机制对提高制造系统的敏捷性、适应性和鲁棒性等将起到至关重要的作用。在阐述了智能制造系统协调机制意义的基础上,分析了现有协调机制与方法(如基于拉格朗日松弛法的协调、基于合同网的协调、基于Petri Net的协调、基于生物激素的协调等)的国内外研究现状及存在的问题。最后,指出了在智能制造系统中,对协调机制与方法需要进一步的研究方向。

Good coordination mechanism will play a crucial role in improving the agility, adaptability and robustness of manufacturing systems in dynamically changing manufacturing systems environment. Based on the significance of co- ordination mechanism for intelligent manufacturing system, the research status between foreign and domestic study progresses on the coordination mechanism and method (such as coordination based on Lagrange Relaxation method, co- ordination based on contract net protocol, coordination based on Petri Net, coordination based on biological hor-mone and pheromone, and so on) is given, some existent problems for coordination mechanism in existent research methods presently are pointed out. Finally, the future research trends of the coordination mechanism and methods for intelligent manufacturing system are presented.

文章引用:
王雷, 康与云. 智能制造系统协调方法研究进展[J]. 人工智能与机器人研究, 2013, 2(1): 29-34. http://dx.doi.org/10.12677/AIRR.2013.21005

参考文献

[1] A. Brogi, J.-M. Jacquet. On the expressiveness of coordination via shared dataspaces. Science of Computer, Programming, 2003, 46(1-2): 71-98.
[2] P. B. Luh, D. J. Hoitomt, E. Max, et al. Scheduling gen-eration and reconfiguration for parallel machines. IEEE Transactions on Robotics and Automation, 1990, 6: 687-696.
[3] G. Lin, P. B. Luh and K. Yuji. Holonic manufacturing scheduling: Architecture coopera-tion mechanism, and implementation. Com- puter in Industry, 1998, 37(3): 213-231.
[4] G. Lin, P. B. Luh and K. Yuji. Holonic manufac-turing scheduling: Architecture, cooperation mechanism, and imple-mentation. Pro- ceedings of the 1997 1st IEEE/ASME International Conference on Advanced Intelligent Macaronis, 1997: 39-45.
[5] S. Tanaka, M. Araki. A branch-and-bound algorithm with Lagrangian relaxation to minimize total tardiness on identical parallel machines. International Journal of Production Economics, 2008, 113(1): 446-458.
[6] 田俊峰, 杨梅. 生产企业供应链中产销运作协调研究[J]. 系统工程理论与实践, 2006, 3: 33-38.
[7] 朱宝琳, 于海斌. 炼钢–连铸–热轧生产调度模型及算法研究[J]. 计算机集成制造系统-CIMS, 2003, 9(1): 33-36.
[8] 何小宇, 张粒子, 谢国辉. 改进的拉格朗日松弛法求解机组组合问题[J]. 电力系统保护与控制, 2010, 38(17): 16-21.
[9] D. Randall, R. G. Smith. Negotiation as a meta-phor for distribut- ed problem solving. Artificial Intelligence, 1983, 20(1): 63-109.
[10] R. G. Smith. Contract net protocol: High-level communication and control in a distributed problem solver. IEEE Transactions on Computers, 1980, C-29(12): 1104-1113.
[11] S R. G. mith, D. Randall. Frameworks for cooperation in distrib- uted problem solving. IEEE Transactions on Systems, Man and Cybernetics, 1981, SMC-11(1): 61-70.
[12] M. Tseng, M. Lei and Z. Guan. A mar-ket-based coordination mechanism for resource allocation in mass customization manufacturing. Proceedings of 1998 Japan-USA Sym-posium on Fle- xible Automation, Otsu, 1998: 637-640.
[13] O. Ta-kuya, H. Kazuo and A. Yuichiro. Lemming: A learning system for multi-robot environments. Proceedings of 1993 International Confer-ence on Intelligent Robots and Systems, 1993: 1141-1146.
[14] 张海俊, 史忠植. 动态合同网协议[J]. 计算机工程, 2004, 30 (21): 44-46.
[15] 万武南, 张蕾. 基于任务熟人集的合同网模型的改进[J]. 计算机应用, 2003, 23(3): 3-5.
[16] S. Aknine, S. Pinson and M. F. Shakun. An extended multi-agent negotiation protocol. Autonomous Agents and Multi-Agent Systems, 2004, 8(1): 1387-2532.
[17] 甘璐, 杨宜民, 王建彬. 一种基于投标结果修正的合同网协议[J]. 控制理论与应用, 2008, 25(2): 329-330.
[18] D. Ouelhadj, S. Petrovic, P. I. Cowling, et al. Inter-agent coop- eration and communication for agent-based robust dynamic sche- duling in steel production. Advanced Engineering Informatics, 2004, 18(3): 161-172.
[19] D. Jégou, D.-W. Kim, P. Baptiste, et al. A contract net based intelligent agent system for solving the reactive hoist scheduling problem. Expert Systems with Applications, 2006, 30(2): 156- 167.
[20] K. Toru, O. Koichi. Ama-deus: A mobile autonomous decentraliz- ed utility system for indoor transportation. Proceedings of IEEE International Conference on Ro-botics and Automation, Leuven, 1998: 2229-2235.
[21] Z. G. Dan, L. N. Cai and L. Zheng. Improved multi-agent system for the vehicle routing problem with time windows. Tsinghua Science and Technology, 2009, 14(3): 407-412.
[22] S. C. Botelho, R. M. Alami. A scheme for multi-robot coopera- tion through negotiated task allocation and achievement. Proceed- ings of IEEE International Conference on Ro-botics and Automation, 1999: 1234-1239.
[23] 林琳, 刘锋. 基于改进合同网协议的多Agent协作模型[J]. 计算机技术与发展, 2010, 20(3): 71-75.
[24] 韩江洪, 刘辛, 黎杰. 基于Petri网的皮带机控制模型分析[J]. 合肥工业大学学报, 2007, 30(2): 129-131.
[25] 江志斌. Petri网及其在制造系统建模与控制中的应用[M]. 北京: 机械工业出版社, 2004.
[26] 洪流, 马巧云, 陈学广. 基于Petri Nets的协调机制研究[J]. 计算机应用研究, 2007, 24(4): 26-28.
[27] F. S. Hsieh. Developing cooperation mechanism for multi-agent systems with Petri nets. Engineering Applications of Artificial Intelligence, 2009, 22(4-5): 616-627.
[28] F. S. Hsieh. Robustness analysis of Holonic assem-bly/disas- sembly processes with Petri nets. Automatica, 2008, 44(10): 2538-2548.
[29] S. Turgay. Agent-based FMS control. Robotics and Computer- Integrated Manufacturing, 2009, 25(2): 470-480.
[30] S. Huang, Y. J. Hu and C. G. Li. A TCPN based approach to model the coordination in virtual manufacturing organizations. Computers & Industrial Engineering, 2004, 47(1): 61-76.
[31] Y. F. Lee, Z. B. Jiang and H. R. Liu. Multiple-objective schedul- ing and real-time dispatch-ing for the semiconductor manufac- turing system. Computers & Op-erations Research, 2009, 36(3): 866-884.
[32] M. Dotoli, M. P. Fanti, A. Giua, et al. First-order hybrid Petri nets: An application to distrib-uted manufacturing systems. Non- linear Analysis: Hybrid Systems, 2008, 2(2): 408-430.
[33] 潘全科, 左凤朝, 朱剑英. 面向绿色制造模式调度的Petri网模型及优化算法[J]. 机械工程学报, 2006, 42(9): 48-53.
[34] 王景华, 韩江洪, 刘征宇等. 面向对象Petri网离散制造系统生产调度建模研究[J]. 系统仿真学报, 2008, 20(15): 4159- 4162.
[35] 刘舟, 朱齐丹, 朱伟等. 面向对象Petri网在舰炮武器系统建模中的研究[J]. 系统仿真学报, 2005, 17(6): 1343-1346.
[36] Q. L. Gao, X. Luo and S. Z. Yang. Stigmergic cooperation me- chanism for shop floor control system. International Journal of Advanced Manufacturing Technology, 2005, 25: 743-753.
[37] L. Tummolini, C. Castelfranchi. Trace signals: The meanings of stigmergy. Berlin: Springer-Verlag, 2007: 141-156.
[38] P. Valckenaers, Hadeli, B. S. Germain, et al. MAS coordination and control based on stigmergy. Computers in Industry, 2007, 58(7): 621-629.
[39] L. Thomas. The lives of a cell: Notes of a biology watcher. New York: Viking Penguin USA, 1974.
[40] 金士尧, 黄红兵, 范高俊. 面向涌现的多Agent系统研究及其进展[J]. 计算机学报, 2008, 31(6): 881-895.
[41] H. Karuna, P. Valckenaers, B. Saint-Germain, et al. Emergent forecasting using a stigmergy approach in manufacturing coordination and control. Berlin: Springer-Verlag, 2005: 210-226.
[42] Hadeli, P. Valckenaers, M. Kollingbaum, et al. Multi-agent coor- dination and control using stigmergy. Computers in Industry, 2004, 53(1): 75-96.
[43] P. Valcke-naers, Hadeli, B. S. Germain, et al. Emergent short- term forecasting through ant colony engineering in coordination and control systems. Advanced Engineering Informatics, 2006, 20(3): 261-278.
[44] Y. Sallez, T. Berger and D. Trentesaux. A stigmergic approach for dy-namic routing of active products in FMS. Computers in In- dustry, 2009, 60(3): 204-216.
[45] P. Peeters, B H. V. russel, P. Valckenaers, et al. Pheromone based emergent shop floor control system for flexible flow shops. Artificial Intelligence in Engineering, 2001, 15(4): 343-352.
[46] H. Van Dyke Parunak, S. Brueckner and J. Sauter. Synthetic pheromone mechanisms for coordination of unmanned vehicles. Pro-ceedings of the 1st International Joint Conference on Auto- nomous Agents and Multi-agent Systems, Bologna, 2002: 448- 450.
[47] Y. Ando, Y. Fukazawa, O. Masutani, et al. Performance of phero- mone model for predicting traffic congestion. Proceedings of the 5th Interna-tional Joint Conference on Autonomous Agents and Multi-Agent Sys-tems, Hakodate, 2006: 73-80.
[48] W. Xiang, H. P. Lee. Ant colony intelligence in multi-agent dy- namic manufacturing scheduling. Engi-neering Applications of Artificial Intelligence, 2008, 21(1): 73-85.
[49] P. Leitao, F. Restivo. ADACOR: A holonic architecture for agile and adaptive manufacturing control. Computers in Industry, 2006, 57(2): 121-130.
[50] J. Varrio, K. Ueda. An emergent modeling method for dynamics scheduling. Journal of Intelligent Manufacturing, 1998, 9(2): 129-140.
[51] K. Ueda, T. Kito and N. Fujii. Modeling biological manufactur- ing systems with bounded-rational agents. CIRP Annals—Manu- facturing Technology, 2006, 55(1): 469-472.
[52] M. Brezocnik, J. Balic and Z. Brezocnik. Emergence of intelli- gence in next-generation manufacturing systems. Robotics and Computer Integrated Manufacturing, 2003, 19(1-2): 55-63.
[53] 陈得宝, 赵春霞. 基于内分泌调节机制的粒子群算法[J]. 控制理论与应用, 2007, 24(6): 1005-1009.
[54] 朱思峰, 王华东, 魏荣华. 基于内分泌机制的防火墙自适应调控算法[J]. 计算机科学, 2009, 36(11): 238-241.
[55] A. K. Gupta, A. I. Sivakumar. Optimization of due-date objec- tives in scheduling semiconductor batch manufacturing. Interna- tional Journal of Machine Tools & Manufacture, 2006, 46: 1671- 1679.
[56] T. Chen. A hybrid fuzzy-neural approach to job completion time prediction in a semiconductor fabrication factory. Neurocom- puting, 2008, 71: 3193-3201.
[57] 薛彩军, 聂宏, 邱清盈等. 分布式优化模式及其协调策略的研究[J]. 机械工程学报, 2004, 40(10): 19-24.
[58] 于江涛, 钱积新. 基于GA的系统分解协调算法Agent实现[J]. 控制与决策, 2003, 18(5): 630-632.
[59] R. Kolisch. Integra-tion of assembly and fabrication for make-to- order production. Interna-tional Journal of Production Economics, 2000, 68(1): 287-306.
[60] S. Christoph, Z. Kirstin. Hierarchical coordination mechanisms within the supply chain. European Journal of Operational Research, 2004, 153(1): 687-703.