湖泊沉积物的年代学研究方法在环境科学中的应用
Applications of Lake Sediment Geochronology in Environmental Sciences
DOI: 10.12677/AEP.2013.31001, PDF, HTML,  被引量 下载: 4,024  浏览: 22,484 
作者: 贾滨洋*, 伍碧:四川大学建筑与环境学院,成都;吴艳宏:中国科学院水利部成都山地灾害与环境研究所,成都
关键词: 湖泊沉积年代学湖泊环境演变气候变化人类活动Lake Sediments; Geochronology; Environmental Evolution of Lakes; Climate Change; Human Activity
摘要: 湖泊沉积物定年常用纹泥法、14C定年、210Pb、137Cs定年和古地磁法等。目前,国内外学者以湖泊沉积物定年为基础,对湖泊沉积速率、沉积通量及沉积物的沉积年代序列进行了大量研究,并结合多指标分析,研究了高分辨率的气候演变、不同湖泊的富营养化特征与过程、重金属及POPs来源及累积特征,辨别其对人类活动和气候变化的响应。沉积物年代学在环境科学应用中的主要发展前景包括:1) 进行区域乃至全球环境变化的联系和对比研究;2) 建立湖泊沉积记录与气候变化因子和人类活动指标的定量数学模式;3) 确定现代环境气候变化在变化周期中所处位置;4) 有效预测人类活动影响下的气候环境演变趋势。
Abstract: Varve dating, radiometric dating using 14C, 210Pb, and 137Cs, and paleomagnetic dating are common tech- niques used to determine the age of lake sediments. A lot of research has been done throughout the world over the sediment accumulation rates, fluxes, and sequences using such techniques. Researchers are trying to decide how the lakes respond to human activities and climate changes by studying highly defined climate changes and what have hap- pened to lakes in terms of eutrophication characteristics and processes, the sources and accumulations of heavy metals and persistent organic pollutants (POPs). Sediment geochronology offers great prospects for future environmental sci- ence studies: 1) uncovering the inter-connections and differences among local and global environmental changes; 2) establishing quantitative mathematical models to measure the relationship between sediment records, climate change factors, and human activities; 3) determining where we are now in the environmental climate change cycle; and 4) ef-fectively predicting the trend of climate environment changes under the influence of human activities.
文章引用:贾滨洋, 吴艳宏, 伍碧. 湖泊沉积物的年代学研究方法在环境科学中的应用[J]. 环境保护前沿, 2013, 3(1): 1-10. http://dx.doi.org/10.12677/AEP.2013.31001

参考文献

[1] T. Nakagawa, H. Kitagawa, Y. Yasuda, et al. Asynchronous climate changes in the North Atlantic and Japan during the last Termination. Science, 2003, 299: 688-691.
[2] 王瑜, 周丽红. 从同位素年代学到构造年代学[J]. 地质通报, 2008, 7(12): 2017-2019.
[3] A. F. Lotter, M. Sturm and B. Wehrli. Varve formation since 1885 and high-resolution varve analyses in hypertrophic Baldeg- gersee (Swit-zerland). Aquatic Sciences, 1997, 59: 304-325.
[4] A. E. K. Ojala, M. Saarnisto and F. Snowball. Climate and envi- ronmental reconstruc-tions from Scandinavian varved lake sediments. Pages News, 2003, 11(2-3): 10-12.
[5] I. Reid, L. Frostick. Late Pleistocence rhyhmite sedimentation at the margin of the Dead Sea trough: A guide to paleo food fre- quency. In: J. McManus, R. W. Duck, Eds., Geomorphology and Sedimentology of Lakes and Reserveoirs. Hoboken: John Wiley & Sons, 1993:•259-273.
[6] F. Oldfield, P. R. J. Crooks, D. D. Harkness, et al. AMS radiocar- bon dating of organic fractions from varved lake sediments: An empirical test of reliability. Journal of Paleolimnology, 1997, 18: 87-91.
[7] 张家富, 周力平等. 湖泊沉积物的14C和光释光测年——以固城湖为例[J]. 第四纪研究, 2007, 27(4): 522-526.
[8] H. C. Zhang, Q. Z. Ming, G. L. Lei, et al. Dilemma of dating on lacustrine deposits in a hyper arid inland basin of NW China. Radio-carbon, 2006, 48(2): 219-226.
[9] 郑同明, 赵家驹等. 巴里坤湖孢粉浓缩物14C测年可行性研究[J]. 海洋地质与第四纪地质, 2010, 30(1): 83-86.
[10] P. G. Appleby, F. Oldfield. Application of 210Pb to sedimentation studies. In: I M. vanovich, R. S. Harmon, Eds., Ura-nium-Series Disequilibruim: Application to Earth. Marine and Envi-ronmental Sciences, Oxford University Press, 1992: 731-778.
[11] W. Pennington, R. S. Cambray, J. D. Eakins, et al. Radio nuclide dating of the recent sediments of Blelham Tarn. Freshwater Bi- ology, 1976, 6: 317-333.
[12] 王小林, 姚书春, 薛滨. 江苏固城湖近代沉积210Pb、137Cs计年及其环境意义[J]. 海洋地质动态, 2007, 23(4): 21-25.
[13] 万国江. 现代沉积的210Pb记年[J]. 第四纪研究, 1997, 3: 230- 239.
[14] F. Thevenon, N. D. Graham, M. Chiaradia, et al. Local to re- gional scale industrial heavy metal pollution recorded in sedi- ments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries. Science of the Total Envi- ronment, 2011, 412-413: 239-247.
[15] J. Zheng, H. Q. Liao, F. C. Wu, et al. Vertical distributions of 239+240Pu activity and 240Pu/239Pu atom ratio in sediment core of Lake Chenghai, SW China. Journal of Radio Analyti-cal and Nu- clear Chemistry, 2008, 275(1): 37-42.
[16] 万国江, 吴丰昌, J. Zheng等. 239+240Pu作为湖泊沉积物计年时标: 以云南程海为例[J]. 环境科学学报, 2011, 3(5): 979-985.
[17] R. Lovlie. Paleo-magnetic stratigraphy: A correlate on method. QuaternaryInternational, 1989, 1: 129-149.
[18] 王永红, 沈焕庭. 河口海岸环境沉积速率研究方法[J]. 海洋地质与第四纪地质, 2002, 22(2): 115-120.
[19] J. C. Ritchie, J. R. Mchenry. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumula- tion rates and pat-terns: A review. Journal of Environmental Quality, 1990, 19: 215-237.
[20] W. F. Libby. Radiocarbon dating. Chicage: University of Chi- cage Press, 1952.
[21] R. L. Otlet, G. Huxtable and D. C. W. Sanderson. The develop- ment of practical systems for 14C measure-ments of small sam- ples using miniature counters. Radiocarbon, 1986, 28: 603-614.
[22] B. Wohlfarth, et al. The Swedish time sclera poten-tial calibration tool for the radiocarbon time scale during the Late Weichselian. Radiocarbon, 1995, 37: 347-360.
[23] I. Olsson. Radio-carbon dating. In: B. E. Berglund, Ed., Hand- book of Holocene Pa-laeoecology and Palaeohydrology. New York: John Wiley, 1986: 273-312.
[24] M. Stiller, et al. Calibration of lacustrine sediment ages using the relationship between 14C levels in lake waters and in the atmos- phere: The case of Lake Kinneret, Radiocarbon. 2001, 43: 821- 830.
[25] 邴海健, 吴艳宏, 刘恩峰等. 长江中下游不同湖泊沉积物中重金属污染物的累积及其潜在生态风险评价[J]. 湖泊科学, 2010, 22(5): 675-683.
[26] R. Thomsen. Palacomagnetic dating. In: P. L. smart, P. D. Frances, Eds., Quaternary Dating Methods: A User’s Guide, Technical Guide 4. Cambridge: Quatrernary Research Association, 1991: 177-198.
[27] R. Battarbee. Palaeolimnological approaches to climate change, with special regard to biological record. Quaternary Science Reviews, 2000, 19(1-5): 107-124.
[28] P. Foss. The distribu-tion and formation of Irish Peatlands. In: C. O’Connell, Ed., The IPCC Guide to Irish Peatlands. Ireland: Irish Peatland Conservation Council, 1987: 5-12.
[29] 周杰, 沈吉. 西部地区生态环境演变过程研究[M]. 北京: 环境科学出版社, 2007.
[30] 陈建徽, 陈发虎, 张恩楼等. 摇蚊亚化石记录的苏干湖近千年来盐度变化研究[J]. 第四纪研究, 2008, 28(2): 338-344.
[31] 靳立亚, 陈发虎, 朱艳. 西北干旱区湖泊沉积记录反映的全新世气候波动周期性变化[J]. 海洋地质与第四纪地质, 2004, 24(2): 101-108.
[32] 吴锡浩, 安芷正, 王苏民等. 中国全新世气候适宜期东亚夏季风时空变迁[J]. 第四纪研究, 1994, 1: 24-37.
[33] 韩伟光, 王心源, 吴立. 公元1450年以来巢湖湖泊沉积物与区域和全球气候变化对比研究[J]. 科技信息, 2010, 15: 23-24.
[34] 张振克, 吴瑞金, 沈吉等. 近1800年来云南洱海流域气候变化与人类活动的湖泊沉积记录[J]. 湖泊科学, 2000, 12(4): 297-302.
[35] 周静, 王苏民, 吕静. 洱海地区一万多年以来气候环境演化的湖泊沉积记录[J]. 湖泊科学, 2003, 15(2): 104-111.
[36] 吴艳宏, 吴瑞鑫, 薛滨等. 13 KaBP以来滇池地区古环境演化[J]. 湖泊科学, 1998, 10(2): 8-9.
[37] 陈敬安, 万国江, 黄荣贵. 程海近代气候变化的化学记录[J]. 海洋地质与第四纪地质, 2000, 20(1): 39-42.
[38] 殷勇, 方念乔, 胡超涌等. 云南中甸纳帕海古环境演化的有机碳同位素记录[J]. 湖泊科学, 2001, 13(4): 289-295.
[39] 李建强, 崔之久, 易朝露等. 云南点苍山冰川湖泊沉积物磁化率的影响因素及其环境意义[J]. 第四纪研究, 2004, 24(5): 591-597.
[40] 张会领. 云南寻甸地区最近八千年气候环境变迁[J]. 中国岩溶, 2004, 23(4): 293-298.
[41] T. J. Whitmore, M. Brenner and X. L. Song. Environmental implications of the late quaternary diatom history from Xingyun Hu, Yunnan Province, China. Memoirs of the California Academy of Science, 1994, 17: 525-538.
[42] D. A. Hodell, M. Bren-ner, S. L. Kanfoush, et al. Paleoclimate of Southwestern China for the past 50,000 yr. inferred from Lake Sediment Records. Quaternary Research, 1999, 52: 369-380.
[43] 沈吉, 张恩楼, 夏威岚. 青海湖近千年来气候环境变化的湖泊沉积记录[J]. 第四纪研究, 2001, 21(6): 508-513.
[44] 汪勇, 沈吉, 吴健等. 湖泊沉积物14C年龄应税效应校正初探——以青海湖为例[J]. 湖泊科学, 2007, 19(5): 504-508.
[45] 金章东, 王苏民, 沈吉等. 内陆湖泊流域的化学风化及气候变化一以内蒙古岱海为例[J]. 地质论评, 2001, 47(1): 42-46.
[46] C. Mayr, M. Fey, T. Haberzettl, et al. Palaeo environ-mental changes in southern Patagonia during the last millennium re- corded in lake sediments from Laguna Azul. Palaeogeography, Palaeo-climatology, Palaeoecology, 2005, 228(3-4): 203-227.
[47] S. M. B. Oliveiraa, S. E. M. G. Saia, L. C. Ruiz,et al. Lacustrine sediments pro-vide geochemical evidence of environmental change during the last millennium in southeastern Brazil. Chemic der Erde Geochemistry, 2009, 69(4): 395-405.
[48] W. M. Last, J. P. Smol. Tracking environ-mental change using lake sediments, volume 1: Basin analysis, coring, and chronolo- gical techniques. Dordrecht: Kluwer Academic Publish-ers, 2001: 171-196.
[49] N. Horvatincic, A. Suckow. Radiocarbon towards a deeper Un- derstanding of how carbonate isotopes (14C, 13C, 18O) reflect en- vironmental changes: A study with recent 210Pb-dated sediments of the Plitvice Lakes, Croatia. Radiocarbon, 2008, 50(2): 233- 253.
[50] U. B. Ülgen, S. O. Franz, D. Biltekin, et al. Climatic and envi- ronmental evolution of Lake Iznik (NW Turkey) over the last ~4700 years. Quaternary International, 2012, 274: 88-101.
[51] M. Morellón, B. Valero-Garcés, P. González-Sampériz, et al. Climate changes and human activities recorded in the sediments of Lake Es-tanya (NE Spain) during the Medieval Warm Period and Little Ice Age. Journal of Paleolimnology, 2011, 46(3): 423- 452.
[52] K. Gajewski, P. B. Hamilton and R. McNeely. A high resolution proxy-climate record from an arctic lake with annually lami- nated sediments on Devon Island, Nunavut, Canada. Earth and Environment Science, 1997, 17(2): 215-225.
[53] K. A. Hughen, J. T. Overpeck and R. F. Anderson. Recent warm- ing in a 500-year palaeo temperature record from varved sedi- ments, Upper Soper Lake, BaffinIsland, Canada. The Holocene, 2000, 10(1): 9-19.
[54] S. F. Lamoureux, R. Gilbert. A 750-yr record of autumn snowfall and temperature variability and winter storminess recorded in the varved sediments of Bear Lake, Devon Island, Arctic Canada. Quaternary Research, 2004, 61(2): 134-147.
[55] E. Haltia-Hovi, T. Saarinen and M. Kukkonen. A 2000-year re- cord of solar forcing on varved lake sediment in eastern Finland. Quaternary Science Reviews, 2007, 26(5-6): 678-689.
[56] J.-M. St. Jacques, B. F. Cumming and J. P. Smol. A 900-year pollen inferred temperature and effective moisture record from varved Lake Mina, west-central Min-nesota, USA. Quaternary Science Reviews, 2008, 27: 781-796.
[57] M. F. Quamar, M. S. Chauhan. Late quaternary vegetation, cli- mate as well as lake-level changes and human occupation from Nitaya area in Hoshangabad District, Southwestern Madhya Pradesh (India), based on pollen evidence. Quaternary Interna- tional, 2012, 263(14): 104-113.
[58] C. Ruiz-Fernándeza, C. Hillaire-Marcel, B. Ghaleb, et al. Recent sedimentary history anthropogenic impacts on the Culiacan River Estuary, Northwestern Mexico: Geochemical evidence from or-ganic matter and nutrients. Environmental Pollution, 2002, 118(3): 365-377.
[59] M. Aloupi, M. O. Angelidis. Geochemistry of natural and an- thropogenic metals in the coastal sediments of the island of Lesvos, Aegean Sea. Environmental Pollution, 2001, 113(2): 211-219.
[60] 吴艳宏, 王苏民. 龙感湖沉积物中人类活动导致的营养盐累积通量估算[J]. 第四纪研究, 2006, 26(5): 843-848.
[61] 朱广伟, 秦伯强, 高光. 太湖现代沉积物中磷的沉积通量及空间差异性[J]. 海洋与湖沼, 2007, 38(4): 329-335.
[62] 刘恩峰, 羊向东, 沈吉等. 近百年来湖北太白湖沉积通量变化与流域降水量和人类活动的关系[J]. 湖泊科学, 2007, 19(4): 407-412.
[63] 陈影影, 陈诗越, 姚敏. 近百年来东平湖沉积通量变化与环境[J]. 2010, 28(4): 783-789.
[64] 翟正丽, 王国平, 刘景双. 乌兰泡沼泽的210Pb、137Cs测年与现代沉积速率[J]. 湿地科学, 2005, 3(4): 269-273.
[65] F. J. H. Mackereth. Chemical investigation of lake sediments and their interpretation. Proceedings of the Royal Society of London, 1965, B161, 295-309.
[66] M. G. Eriksson, P. Sandgren. Mineral magnetic analyses of sedi- ment cores recording recent soil erosion history in Central Tan- zania. Paleogeography, Palaeoclimatology, Palaeoecology, 1999, 152: 356-372.
[67] 姚书春, 薛滨, 夏威岚. 洪湖近540年来人类活动的沉积记录[J]. 河海大学学报(自然科学版), 2004, 3: 154-159.
[68] 陆敏, 张卫国, 师育新等. 太湖北部沉积物金属和营养元素的垂向变化及其影响因素[J]. 湖泊科学, 2004, 15(3): 213-220.
[69] L. Wick, G. Lemcke. Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: High- resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holo- cene, 2003, 13(5): 665-675.
[70] M. Garçon, C. Chauvel, E. Chapron, et al. Silver and lead in high-altitude lake sediments: Proxies for climate changes and human activities. Applied Geochemistry, 2012, 27(3): 760-773.
[71] A. Currása, L. Zamorab, J. M. Reedc, et al. Climate change and human impact in central Spain during Roman times: High- resolution multiproxy analysis of a tufa lake record (Somolinos, 1280 m asl). Catena, 2012, 89(1): 31-53.
[72] 杨洪, 易朝路, 谢平, 邢阳平, 倪乐意. 武汉东湖沉积物碳氮磷垂向分布研究[J]. 地球化学, 2004, 33(5): 507-514.
[73] J. P. Corella, A. Moreno, M. Morellón, et al. Climate and human impact on a meromictic lake during the last 6000 years (Montcortès Lake, Central Pyrenees, Spain). Journal of Paleolimnology, 2011, 46(3): 351-367.
[74] B. B. Perren, C. Massa, V. Bichet, et al. A paleoecological per- spective on 1450 years of human impacts from a lake in south- ern Greenland. The Holocene, 2012, 22(9): 2025-1034.
[75] 陈芳, 夏卓英, 宋春雷等. 湖北省若干浅水湖泊沉积物有机质与富营养化的关系[J]. 水生生物学报, 2007, 31(4): 467-471.
[76] 张路, 范成新, 秦伯强等. 模拟扰动条件下太湖表层沉积物磷行为的研究[J]. 湖泊科学, 2001, 11(1): 35-42.
[77] 陆敏, 张卫国, 师育新等. 太湖北部沉积物金属和营养元素的垂向变化及其影响因素[J]. 湖泊科学, 2004, 15(3): 213-220.
[78] X. C. Jin, S. R. Wang, Y. Pang, et al. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environmental Pol- lution, 2006, 139: 288-295.
[79] 刘恩峰. 长江中下游典型湖泊沉积物地球化学特征及人类活动响应——以太湖、太白湖为例[D]. 中国科学院南京地理与湖泊研究所, 2005.
[80] 陈萍, 何报寅等. 洪湖人类活动的沉积物记录[J]. 湖泊科学, 2004, 16(3): 233-237.
[81] 杨达源, 王云飞. 近2000年淮河流域地理环境的变化与洪灾——黄河中游的洪灾与洪泽湖的变化[J]. 湖泊科学, 1995, 7(1): 1-7.
[82] 沈吉, 杨丽原, 羊向东等. 全新世以来云南洱海流域气候变化与人类活动的湖泊沉积记录[J]. 中国科学, D辑, 2004: 130- 138.
[83] 陈荣彦, 宋学良, 张世涛等. 滇池700年来气候变化与人类活动的湖泊环境响应研究[J]. 盐湖研究, 2008, 12(6): 7-12.
[84] 陈诗越, 金章东, 吴艳宏等. 近百年来龙感湖地区湖泊营养化过程[J]. 地球科学与环境学报, 2004, 26(4): 81-84.
[85] X. Yuan, N. Xu and Y. Tao. Spatial distribu-tion and eutrophic characteristics of bottom sediments in Taihu Lake. Resources Survey & Environment, 2003, 24(1): 20-28.
[86] M. Son-dergaard, J. P. Jensen and E. Jeppesen. Retention and internal loading of phosphoeus in shallow, eutrophic lakes. Sci World, 2001, 1: 427-442.
[87] 陈诗越, 于兴修, 吴爱琴. 长江中下游湖泊富营养化过程的湖泊沉积记录[J]. 生态环境, 2005, 14(4): 526-529.
[88] 吴艳宏, 刘恩峰, 邴海健等. 人类活动影响下的长江中游龙感湖近代湖泊沉积年代序列[J]. 中国科学: 地球科学, 2010, 40(6): 751-757.
[89] 薛滨, 姚书春, 王苏民. 长江中下游不同类型湖泊沉积物营养盐蓄积变化过程及其原因分析[J]. 第四纪研究, 2007, 27(1): 122-127.
[90] 赵萱, 成杰民, 鲁成秀. 不同生态类型富营养化湖泊沉积物中有机质赋存形态[J]. 环境化学, 2012, 31(3): 302-307.
[91] 金相灿, 王圣瑞, 庞燕. 太湖沉积物磷形态及pH值对磷释放的影响[J]. 中国环境科学, 2004, 24(6): 707-711.
[92] 邓建才, 陈桥, 翟水晶等. 太湖水体中氮、磷空间分布特征及环境效应[J]. 环境科学, 2008, 29(12): 3382-2286.
[93] 顾延生, 李雪艳, 邱海鸥等. 100年来东湖富营养化发生的沉积学记录[J]. 生态环境, 2008, 17(1): 35-40.
[94] J. M. Russell, S. J. McCoy, D. Verschuren, et al. Human impacts, climate change, and aquatic ecosystem response during the past 2000 yr at Lake Wandakara, Uganda. Quaternary Research, 2009, 72(3): 315-324.
[95] J. Park, R. Byrne, H. Böhnel, et al. Holocene climate change and human impact, central Mexico: A record based on Maar Lake pollen and sediment chemistry. Quaternary Science Re-views, 2010, 29(5-6): 618-632.
[96] M. Stebich, C. Brüchmann, T. Kulbe, et al. Vegetation history, human impact and climate change during the last 700 years re- corded in annually laminated sediments of Lac Pavin. Review of Palaeobotany and Palynology, 2005, 133(1-2): 115-133.
[97] D. Ariztegui, F. S. Anselmetti, J.-M. Robbiani, et al. Natural and human-induced environmental change in southern Albania for the last 300 years: Constraints from the Lake Butrint sediment- tary record. Global and Planetary Change, 2010, 71(3-4): 183- 192.
[98] 李鸣, 刘琪璟. 鄱阳湖水体和底泥重金属污染特征与评价[J]. 南昌大学学报: 自然科学版, 2010, 34(5): 486-489.
[99] 向勇, 缪启龙, 丰江帆. 太湖底泥中重金属污染及潜在生态危害评价[J]. 南京气象学院学报, 2006, 29(5): 700-705.
[100] 王素芬, 张惠潼. 南四湖表层底泥重金属污染的风险评价[J]. 山东水利, 2009, 9: 22-24.
[101] 陈洁, 李升峰. 巢湖表层沉积物中重金属总量及形态分析[J]. 河南科学, 2007, 25(2): 303-307.
[102] 刘峰, 胡继伟, 秦樊鑫等. 红枫湖沉积物中重金属元素溯源分析的初步探讨[J]. 环境科学学报, 2010, 30(9): 1871-1879.
[103] 杜臣昌, 刘恩峰, 羊向东等. 巢湖沉积物重金属富集特征与人为污染评价[J]. 湖泊科学, 2012, 24(1): 59-66.
[104] 刘恩峰, 沈吉, 刘兴起等. 太湖沉积物重金属和营养盐变化特征及污染历史[J]. 中国科学D辑地球科学2005, 35(增刊II): 73-80.
[105] 袁和忠, 沈吉, 刘恩峰. 太湖重金属和营养盐污染特征分析[J]. 环境科学, 2011, 32(3): 649-656.
[106] 唐阵武, 程家丽, 岳勇. 武汉典型湖泊沉积物中重金属累积特征及其环境风险[J]. 湖泊科学, 2009, 21(l): 61-68.
[107] 何华春, 许叶华, 杨競红等. 洪泽湖流域沉积物重金属元素的环境记录分析[J]. 第四纪研究, 2007, 27(5): 765-774.
[108] H. Schmidt, C. E. Reimers. The recent history of trace metal ac- cumulation in the Santa Barbara Basin, southern Cali-fornia Bor- derland. Estuarine, Coastal and Shelf Science, 1991, 33: 485- 500.
[109] G. Müller, G. Grimmer and H. Böhnke. Sedimentary record of heavy metals and polycyclic aromatic hydrocarbons in lake constance. Naturwissenschaften, 19776, 4(8): 427-431.
[110] I. Ren-berg. Concentration and annual accumulation values of history of heavy metal pollution. Hydrobiologia, 1986, 143(1): 379-385.
[111] A. R. Abernathy, G. L. Larson and R. C. Mathews Jr. Heavy metals in the surficial sediments of Fontana Lake, North Carolina. Water Research, 1984, 18(3): 351-354.
[112] H. R. Von Gunten, M. Sturm and R. N. Moser. 200-year record of metals in lake sediments and natural back-ground concentra- tions. Environmental Science & Technology, 1997, 31(8): 2193- 2197.
[113] J. O. Nriagu, A. L. W. Kemp and H. K. T. Wong. Sedimentary record of heavy metal pollution in Lake Erie. Geochimica et Cosmochimica Acta, 1979, 43(2): 247-258.
[114] F. Oldfield. Magnetic measurements of recent sediments from Big Moose Lake. Adirondack Mountains, 1983, 103: 37-44.
[115] 舒卫先, 李世杰. 太湖流域典型湖泊表层沉积物中多环芳烃污染特征[J]. 农业环境科学学报, 2008, 27(4): 1409-1414.
[116] 刘远. 持久性有机污染物在渤海沉积物中的分布规律与来源解析[D]. 大连海事大学院, 2010.
[117] 王海, 王春霞, 陈伟等. 武汉东湖表层沉积物有机物污染状况[J]. 环境科学学报, 2002, 22(4): 434-438.
[118] 姚威风. 持久性有机污染物在贡湖沉积物和水体的分布特征济源解析[D]. 吉林农业大学, 2011.
[119] 杨敏. 辽河流域沉积物中持久性有机污染物的研究[D]. 中国科学院研究生院, 2006.
[120] G. Sanders, K. C. Jones and J. Hamilton-Taylor. Concentrations and deposition fluxes of polynuclear aromatic hydrocarbons and heavy metals in the dated sediments of a rural English lake. En- vironmental Toxicology and Chemistry, 1993, 12(9): 1567-1581.
[121] C. Malmquist, R. Bindler and I. Renberg. Time trends of se- lected persistent organic pollutants in lake sediments from Greenland. Environmental Science & Technol-ogy, 2003, 37(19): 4319-4324.
[122] D. F. K. Rawn, W. L. Lockhart, et al. Historical contamination of Yukon Lake sediments by PCBs and organochlorine pesticides: Influence of local sources and watershed characteristics. Science of the Total Environment, 2001, 280(1-3): 17-37.