AAS  >> Vol. 1 No. 2 (April 2013)

    Research on Explosion Energy of Type II-Supernova in 11~40MΘ Progenitor Stars Model

  • 全文下载: PDF(676KB) HTML    PP.14-19   DOI: 10.12677/AAS.2013.12003  
  • 下载量: 1,346  浏览量: 7,412   科研立项经费支持



前新星爆发能II型超新星Progenitor Stars; Explosion Energy; Type II-Supernova



In the paper, we apply four various definitions of explosion energy, based on modified the state equation in LLPR model and the II supernova explosion code “WLYW-89”, to research explosion energy of type II-supernova in new progenitor stars model of the main-sequence mass (: the sun mass). Apply the results of the discrete explosion energy in various mass cell and explosive energy with time, and compare with theoretical and observation results, we find that, in four various definitions of explosion energy, the second definition of explosion energy is the most suitable to supernova explosion in new progenitor stars model, especially, for , theoretical results are good agreement with experimental observation data. It is because that, on one the hand, is defined by the view of energy, on the other hand, its shock velocity in agreement with the experimental observation and it can reduce the gap of theoretical and observation results.

夏雄平. 11~40MΘ前新星模型下的II型超新星爆发能研究[J]. 天文与天体物理, 2013, 1(2): 14-19. http://dx.doi.org/10.12677/AAS.2013.12003


[1] S. A. Colgate, M. H. Johnson. Hydrodynamic origin of cosmic rays. Physical Review Letters, 1960, 5(6): 235-238.
[2] S. A. Colgate, R. H. White. The hydrodynamic behavior of su- pernovae explosions. The Astrophysical Journal, 1966, 143: 626- 681.
[3] G. E. Brown, H. A. Bethe and G. Baym. Supernova theory. Nuclear Physics A, 1982, 375(3): 481-532.
[4] T. Kuroda, K. Kotake and T. Takiwaki. Fully general relativistic simulations of core-collapse supernovae with an approximate neutrino transport. The Astrophysical Journal, 2012, 755(1): 11- 60.
[5] S. X. Nakamura, K. Sumiyoshi and T. Stato. Neutrino deuteron reaction in the heating mechanism of core-collapse supernovae. Physical Review C, 2009, 80(3): 035802.
[6] I. Sagert, T. Fischer, M. Hempel, G. Pagliara, J. Schaffner-Bielich, A. Mezzacappa, F.-K. Thielemann and M. Liebendörfer. Signals of the QCD phase transition in core-collapse supernovae. Physical Review Letters, 2009, 102(8): 081101.
[7] B. Dasgupta, A. Dighe, A. Mirizzi and G. G. Raffelt. Spectral split in prompt supernova neutrino burst: Analytic three-flavor treatment. Physical Review D 2008, 77(11): 113007.
[8] D. Y. Tsvetkov, I. M. Volkov, P. V. Baklanov, S. L. Blinnikov and O. Tuchin. Photometric observations and modeling of type IIb supernova 2008ax. Peremennye Zvezdy, 2009, 29(2): 2-13.
[9] K. Nomoto, M. Hashimoto. Presupernova evolution of massive stars. Physics Reports, 1988, 163(1): 13-36.
[10] S. E. Woosley, T. A. Weaver. Presupernova models: Sensitivity to convective algorithm and coulomb corrections. Physics Reports 1988, 163(1): 79-94.
[11] A. Heger, N. Langer. Presupernova evolution of rotating massive stars. II. evolution of the surface properties. Astrophysical Journal, 2000, 544: 1016-1035.
[12] A. Heger, S. E. Woosley and H. C. Spruit. Presupernova evolution of differentially rotating massive stars including magnetic fields. Astrophysical Journal, 2005, 626: 350-363.
[13] S. E. Woosley, A. Heger. The progenitor stars of gamma-ray bursts. Astrophysical Journal, 2006, 637: 914-921.
[14] S. E. Woosley, A. Heger. Nucleosynthesis and remnants in massive stars of solar metallicity. Physics Reports, 2007, 442(1): 269-283.
[15] M. Limongi, A. Chieffi. Presupernova evolution and explosion of massive stars. Journal of Physics: Conference Series, 2010, 202(1): 012002.
[16] S. W. Bruenn. The prompt-shock supernova mechanism. I-The effect of the free-proton mass fraction and the neutrino transport algorithm. Astrophysical Jounal, 1989, 340: 955-965.
[17] S. W. Bruenn. The prompt-shock supernova mechanism. II- Supra- nuclear EOS behavior and the precollapse model. Astrophysical Journal, 1989, 341: 385-400.
[18] S. C. Zhang, Z. H. Xie, Y. R. Wang and W. Z. Wang. Convective instability in the prompt explosion model of type-II supernovae. Chinese Journal of Astronomy and Astrophysics, 1998, 22: 161- 165.
[19] X. P. Xia, Y. Lin. The effects of ion screening on neutrino-nu- cleus interactions in core-collapse supernova explosions. Research in Astronomy and Astrophysics, 2010, 10: 689-695.
[20] D. K. Nadyozhin. Explosion energies, nickel masses and distances of type II plateau supernovae. Monthly Notices of the Royal Astronomical Society, 2003, 346(1): 97-104.
[21] S. J. Smartt, J. J. Eldridge, R. M. Crockett and J. R. Maund. The death of massive stars I. Observational constraints on the progenitors of type II-P supernovae. Monthly Notices of the Royal Astronomical Society, 2009, 395(3): 1409-1437.
[22] D. Q. Lamb, J. M. Lattimer, C. J. Pethick and D. G. Ravenhall. Hot dense matter and stellar collapse. Physical Review Letters, 1978, 41(23): 1623-1626.