基本情况
顾荣,南京大学计算机系副研究员
主要经历
2016年博士毕业于南京大学,主持国家自然科学基金面上项目/青年项目、国家重点研发计划子课题、中国博士后科学基金特别资助项目,以及阿里巴巴、百度、字节跳动、中国石化、华泰证券等企业创新研究基金项目等多项,并已在 TPDS、ICDE、IPDPS、ICPP 等领域前沿期刊会议发表论文30余篇
获奖经历
获 2018 年度江苏省科学技术一等奖、2019 年度江苏省计算机学会青年科技奖
研究方向
大数据处理、分布式机器学习、数据库
论文发表
-
ShadowAQP: Efficient Approximate Group-by
and Join Query via Attribute-oriented Sample Size Allocation and Data
Generation. (VLDB, CCF-A), 2023.
-
Adaptive Online Cache Capacity Optimization
via Lightweight Working Set Size Estimation at Scale. (USENIX ATC, CCF-A),
2023.
-
Wormhole Filters: Caching Your Hash on
Persistent Memory. (EuroSys, CCF-A), 2024.
-
An Active-tuning Learned Index with
Group-Wise Learning Granularity. (SIGMOD, CCF-A), to appear, 2025.
-
ACER: Accelerating Complex Event Recognition
via Two-Phase Filtering under Range Bitmap-Based Indexes. (KDD, CCF-A), 2024.
-
High-level Data Abstraction and Elastic
Data Caching for Data-intensive AI Applications on Cloud-native Platforms.
(IEEE TPDS, CCF-A), 2023.
-
Seesaw Counting Filter: A Dynamic Filtering
Framework for Vulnerable Negative Keys. (IEEE TKDE, CCF-A), 2023.
-
Fluid-Shuttle: Efficient Cloud Data
Transmission based on Serverless Computing Compression. (ACM/IEEE ToN, CCF-A),
2024.
-
The Reinforcement Cuckoo Filter. (IEEE
INFOCOM, CCF-A), to appear, 2024.
-
Time and Cost-Efficient Cloud Data
Transmission based on Serverless Computing Compression. (IEEE INFOCOM, CCF-A),
2023.
-
Meces: Latency-efficient Rescaling via
Prioritized State Migration for Stateful Distributed Stream Processing Systems.
(USENIX ATC, CCF-A), 2022.
-
Fluid: Dataset Abstraction and Elastic
Acceleration for Cloud-native Deep Learning Training Jobs. (IEEE ICDE, CCF-A),
2022.
-
Liquid: Intelligent Resource Estimation and
Network-Efficient Scheduling for Deep Learning Jobs on Distributed GPU
Clusters. (IEEE TPDS, CCF-A), 2022.
-
Bamboo Filters: Make Resizing Smooth. (IEEE
ICDE, CCF-A), pp. 979-991, 2022.
-
Efficient, Scalable and Robust Data Shuffle
Service for Distributed MapReduce Computing on Cloud. (IEEE HPCC, CCF-C), 2022.
-
A Pareto Optimal Bloom Filter Family with
Hash Adaptivity (VLDB Journal, CCF-A), 2022.
-
Seesaw Counting Filter: An Efficient
Guardian for Vulnerable Negative Keys During Dynamic Filtering (WWW, CCF-A),
2022.
-
Penguin: Efficient Query-based Framework
for Replaying Large Scale Historical Data. (IEEE TPDS, CCF-A), 2018.
-
Improving Execution Concurrency of
Large-Scale Matrix Multiplication on Distributed Data-Parallel Platforms. (IEEE
TPDS, CCF-A), 2017.
-
SAFE: Service Availability via Failure
Elimination Through VNF Scaling. (ACM/IEEE ToN, CCF-A), 2023.
-
A Generic Framework for Finding Special
Quadratic Elements in Data Streams. (ACM/IEEE ToN, CCF-A), 2024.
-
Bamboo Filters: Make Resizing Smooth
(Journal Version). (ACM/IEEE ToN, CCF-A), 2024.
-
A Survey of Multi-dimensional Indexes: Past
and Future Trends. (IEEE TKDE, CCF-A), 2024.