[引著格式] 赵玉芝,刘淑敏,陶亚媛,等. 牙刷狀油藏高含水后期转换开发方式研究及应用 [J]. 石油天然气学报 (江汉石油学院学报), 2015, 37 (9+10): $42\sim45$, 58.

牙刷状油藏高含水后期转换开发方式研究及应用 ——以车城油田为例

赵玉芝,刘淑敏,陶亚媛许爱云,魏宁,鲁秀芹

(中石油华北油田分公司勘探开发研究院,河北任丘 062552)

[摘要] 华北油田牙刷状油藏,初期主要采取逐层上返的开发方式,目前大部分油藏油层动用程度高,剩余油层潜力较小,已进入高含水期。为进一步提高该类油藏采收率,以车城油田为例,油藏工程和数值模拟方法相结合,进行了油藏水淹规律和剩余油潜力研究,提出采用横向换向注水方式开发,同时配合构造高部位钻加密调整井、层间分采等多种挖潜方式,有效挖潜了井间剩余油,并在该块取得了较好的开发效果,为同类油藏高含水后期的开发开辟了新途径。

[关键词] 高含水期; 牙刷状油藏; 开发方式; 横向换向; 配套挖潜

「中图分类号] TE341

[文献标志码] A [文章编号] 1000-9752 (2015) 09+10-0042-04

华北油田牙刷状油藏主要受构造控制,纵向油层多,并沿断棱高部位呈窄条带分布,宽度约在350m以内。鉴于该类油藏的地质特点,初期主要采取逐层上返的开发方式。这些油藏含水上升速度快,自然递减大,大部分已进入高含水阶段,采出程度较低(平均在15%以下),有必要探索新的开发方式,进一步提高油藏采收率。以车城油田为例,综合运用多种动静态资料,落实剩余油潜力,通过数值模拟^[1]和现场试验等方法,提出了高含水后期合理的开发方式和配套的挖潜措施,为提高油藏采收率打下了可靠的基础。

1 油藏概况

车城油田位于河北省辛集市南智丘镇,构造位置属于冀中坳陷束鹿凹陷西斜坡西曹固构造带,是一个鼻状断裂构造带,主要含油层位为沙河街组 2 段(Es_2)和 3 段(Es_3),其中 Es_3 为典型的牙刷状油藏,具有一定的天然能量,平均孔隙度 19.4%,渗透率在 $150\sim180\,\mathrm{mD}$,属中孔中渗透储层,地层原油黏度 $1.92\,\mathrm{mPa} \cdot s_3$

该油藏 1997 年投入试采,2001 年初进行全面建产,初期依靠天然能量,后期主要通过逐层上返、局部井区边部注水等方法进行开发。该油藏目前进入高含水阶段,综合含水率 85.9%,采油速度 0.73%,采出程度 14.23%。

2 油藏开发中存在的主要问题

2.1 油藏含水上升快,稳产难度大

油藏进入高含水后期,目前含水上升率为8.2%,自然递减率为20%,油藏稳产难度较大。

[收稿日期] 2015-09-28

[基金项目] 中国石油天然气股份有限公司重大专项(2014E-35-06)。

[作者简介] 赵玉芝(1978-), 女, 高级工程师, 现主要从事油气田开发工作, yjy_zyz@petrochina.com.cn。

2.2 人工边低部注水效果不理想

2004年在局部井区对边低部位高含水油井实施转注,注水后 62%受效油井含水呈上升趋势,增油效果不理想。

2.3 剩余油藏潜力小,逐层上返基础薄弱

油藏动用程度为81.7%,剩余油层较少,并且剩余油层主要集中在油藏构造高部位少数井中, 68%的油井无剩余油层,逐层上返基础薄弱。

3 油藏水淹规律和潜力研究

3.1 油藏水淹规律

油藏生产动态与剩余油饱和度测井资料相结合,综合分析认为:纵向上生产层水淹比例大,高水淹层厚度比例在80%以上,表明在边水水驱方向上,生产井附近含水饱和度较高,水淹严重。从数值模拟结果看(见图1),水淹方向由低部位向高部位呈指状推进,表现为低部位生产井水淹程度相对较轻,呈强水淹状态,高部位生产井水淹程度相对较轻,呈中强水淹状态存在,而断层根部构造高部位呈未水淹状态。

3.2 剩余油主要潜力类型

在油藏水淹规律研究结果基础上,单砂层地质储量和单井分层算产相结合,开展油藏剩余油分布规律和潜力研究^[2]:该油田总剩余地质储量 475.2×10⁴t,其剩余油类型主要以3种形式存在(见图 2),其中井间滞留型剩余地质储量占总剩余储量的 67.1%,为该油藏的主要剩余油类型(见图 2)。

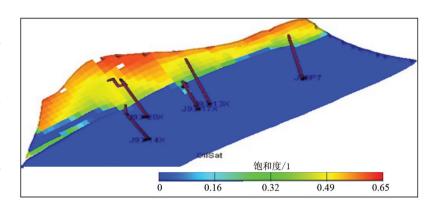


图 1 车城油田晋 93 断块沙河街组 3 段 № 亚段 2 小层剩余油饱和度图

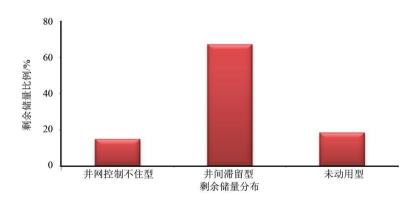
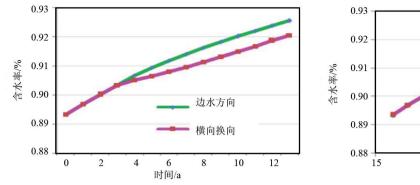


图 2 车城油田平面剩余油潜力类型规模统计图

4 油藏转换开发方式研究

4.1 合理注水开发方式研究


4.1.1 注水部位

根据油藏实际地质模型,采用数值模拟方法,针对不同注水部位[3](高部位横向换向注水和低部位边水方向注水)的开发指标进行了预测。结果显示:高部位横向注水后,见效井组含水上升趋势减缓,10年累计产油量高于边水方向水驱效果(见图3)。

4.1.2 注水时机

在优选横向换向水驱的基础上,预测高含水后期油藏在不同地层能量(油藏压力保持水平分别为50%、60%、70%)横向换向的注水效果。结果显示(见图4):注水增油效果随着油藏能量水平的增高而变差。在保证液量的前提下,油藏能量越低换向注水效果越好。因为油藏地层能量低时,横向换向

注水既实现了换向水驱,又补充了地层能量,水驱效果较好。

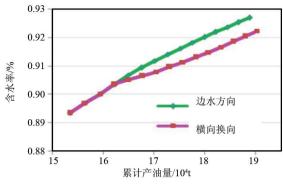


图 3 注水后见效井组含水率和累计产油量对比曲线

4.1.3 注采比

在以上研究的基础上,预测油藏能量保持水平为50%时不同注采比注水效果,结果显示(见图5、6):注采比越高,见效越快,但后期含水上升速度较快。综合考虑见效状况、累计增油量,注采比在1.0~1.2左右时,含水上升速度较慢,十年累积产油最高。因此初期注采比应控制在1.0~1.2左右。

随着注水时间延长,油藏压力逐步恢复,当油藏压力保持水平恢复到70%

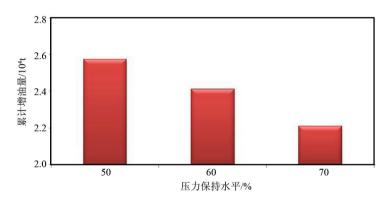


图 4 不同压力水平 10 年累计增油量图

时,不同注采比预测结果显示(见图 7、8): 注采比在 1.0~1.2 时,见效不明显,增油量较低,注采比大于 2.0 后,虽见效快,但有效期短,而注采比在 2.0 左右时,见效好累计增油量最高,因此随着油藏压力水平的升高,应逐步提高注采比到 2.0 左右。

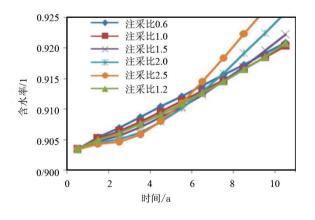


图 5 油藏压力保持水平为 50%时注水见效井组 含水率对比曲线

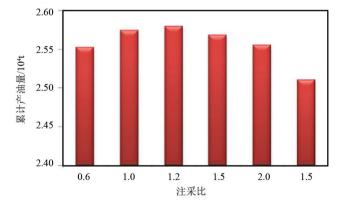


图 6 油藏压力保持水平为 50%时不同注采比 10 年累计产量对比图

根据以上研究,对于受构造控制、纵向油层多并沿断棱高部位呈窄条带分布、具有一定边水能量的 牙刷状油藏,在高含水后期其注水方式应转换为高部位横向注水,其水驱方向与边水方向近似垂直,实现换向水驱。该油藏目前地层压力保持水平为 63.2%,初期注采比应控制在 1.2 左右,后期随着压裂升高逐步提高注采比 2.0 左右。

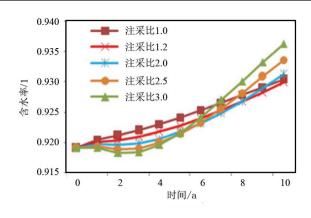


图 7 油藏压力保持水平为 70%时注水见效井组 含水率对比曲线

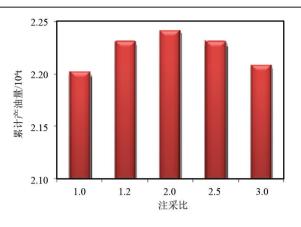


图 8 油藏压力保持水平为 70%时不同注采比 10 年累计产量对比图

4.2 层间挖潜方式研究

针对牙刷状油藏动用层数多、层间物性差异大,低渗透层动用状况差的状况,开展了分层采油试验。为减少层间干扰,细分层段内油层厚度小于10m、层数3层以内,渗透率级差控制在3以内。在此基础上,优选3口井开展现场分采试验。开采结果见表1。

表 1 结果显示,单层或多层分采后均高含水,说明纵向上单井点周围水淹状况较严重,仅单纯依靠单井点的分采措施不利于剩余油的挖潜,需要在换向水驱的基础上,把井间剩余油驱替到井点附近,再实施层间挖潜。

井号	分采层号	措施 类型	措施前				分采	措施后			
			日产液	日产油	含水率	动液面	层号	日产液	日产油	含水率	动液面
			$/\mathrm{m}^3$	/t	/%	/m		$/\mathrm{m}^3$	/t	/%	/m
晋 94-5X	12,14,17,19	采用压电开关工艺	29.6	0.6	69.1	1100	17,19	8.6	0.3	97.0	1980
							12	22.0	2.8	87.3	1476
							14	9.3	1.1	87.8	1987
晋 94-4x	12,13,14	采用压电开关工艺	20.5	0.8	96.0	1141	12	7.6	0.0	100.0	493
							14	13.2	0.0	100.0	526
							12,14	11.9	0.0	100.0	477
晋 105-34X	5,7,10~12	采用分采泵分采工艺	25.0	2. 1	91.5	1571	5、7 层配液	27.0	1.6	94.1	1594
							10m^3 , $10 \sim 12$				
							层配液 8m³				

表 1 车城油田分采效果统计表

5 开发调整对策及实施效果

根据以上研究成果,针对油藏存在的问题,提出以下治理对策:

- 1)针对井间剩余油,实施横向注水换向驱油。横向注水开采通过增加横向驱动能量,在一定程度上削弱了边水的指进作用,扩大了水驱波及体积,可将井间滞留油驱替到油井附近,是提高油藏采出程度的有效开发手段。
- 2)针对井网控制差型剩余油,部署加密调整井^[4],根据水淹规律分析,在井网控制较差区域油层水淹状况较低,剩余油相对富集,可部署加密调整井,提高井网对储量的控制程度。
- 3)针对层间动用差的剩余油,继续开展层间分采,减缓层间干扰,同时配合水井换向驱油,分注或调驱,提高了分采效果。

根据以上对策,共提出油水井措施55井次,其中内部调整井2口,油井分采、卡堵水措施27井次;水井转注、分注、调驱等26井次。