平面图的变换与着色的性质

韩友发1,刘佳1,孔令天1,阎昕明2

¹辽宁师范大学数学学院,辽宁 大连 ²广东第二师范学院数学系,广东 广州 Email: hanyoufa@sina.com, xinmingcnu@163.com

收稿日期: 2021年4月17日; 录用日期: 2021年5月2日; 发布日期: 2021年5月20日

摘要

本文研究了平面图着色的性质,给出了平面图的变换,包括树形变换、三角形变换(n-圈变换)和桥变换等,并且利用图的双色多项式证明了这些变换不改变着色数,进而研究了某些平面图的着色性质。

关键词

图着色,双色多项式,图变换,纽结

Moves and Coloring Properties for Planar Graph

Youfa Han¹, Jia Liu¹, Lingtian Kong¹, Xinming Yan²

¹School of Mathematics, Liaoning Normal University, Dalian Liaoning

²Department of Mathematics, Guangzhou University of Education, Guangzhou Guangdong Email: hanyoufa@sina.com, xinmingcnu@163.com

Received: Apr. 17th, 2021; accepted: May 2nd, 2021; published: May 20th, 2021

Abstract

This paper studies the coloring properties of planar graph, gives their moves including tree-move triangle-move (n-circle-move), bridge-move, and proves that these moves don't change coloring number by using dichromatic polynomial. Furthermore, the coloration of some planar graphs is studied.

Keywords

Graph Coloring, Dichromatic Polynomial, Graph Move, Knot

文章引用: 韩友发, 刘佳, 孔令天, 阎昕明. 平面图的变换与着色的性质[J]. 应用数学进展, 2021, 10(5): 1508-1514. DOI: 10.12677/aam.2021.105160

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

1. 引言

纽结理论的核心问题之一就是分类,不论是早期的 Alexander 多项式[1]、Conway 多项式[2]到上个世纪八十年代的中后期的 Jones 多项式[3]在纽结分类中发挥了重要的作用,推进了纽结理论和相关领域的发展。Kauffman [4]一般化了 Jones 多项式,给出了 Jones 多项式存在比较初等的数学证明,同时利用这些方法证明了纽结理论中泰特猜想。随着纽结理论研究的深入,其研究成果和方法在统计力学[3] [5]和生物 DNA 分子重组[6]等领域都得到了广泛的应用,而且促进了这些领域的发展,特别是 Kauffman [4]还发现了纽结理论与图论有着密切的联系,即纽结的投影图与它的平面图是一一对应的,因此建立了纽结多项式和平多图多项式的联系,进而将图论的有些研究与纽结理论研究结合在一起,把平面图着色的问题转化为多项式根的性质,因此为平面图着色问题的研究提出新的方法,充分体现了纽结理论发展的活力。

本文分为二个部分,第一部分主要介绍了平面图基本概念和性质,特别是给出图的双色多项式的性质和本文需要的一些结果。第二部分给出了图的变换,主要是研究了平面图在这些变换下着色的不变性。

2. 预备知识

定义 2.1 一个图是一个二元组,这个二元组包含一个顶点集V(G),一个边集E(G)使得每一条边和两个顶点相关联,不同的两边不能相交非顶点,并将这两个顶点称为这条边的端点。如果 $V(G') \subseteq V(G)$, $E(G') \subseteq E(G)$,那么称图 G' 为图 G 的子图。

定义 2.2 设 n 是一个正整数,定义一个 n-弧是一个包含 n 条边,n+1 个项点的图,满足下面的性质:将边记为 $A_1,A_2,\cdots A_n$, 顶点记为 a_0,a_1,\cdots ,a_n , 对于每一个 j, A_i 的端点是 a_{i-1} 和 a_i 。图 1 是 3-弧 。

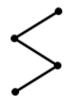


Figure 1. 3-arc **图** 1. 3-弧

定义 2.3 设 n 是一个正整数,一个 n-圈定义为一个包含 n 个顶点和 n 个边的图 G,满足下面的性质:顶点记为 a_0, a_1, \dots, a_n ,边记为 $A_1, A_2, \dots A_n$,对于每一个 j, A_j 的端点是 a_{j-1} 和 a_j (这里 $a_0 = a_n$)。图 2 是 4-圈。如果一个图中没有圈,并且是连通的,则称为树形。

Figure 2. 4-loop 图 2. 4-匿

定义 2.4 设 G 和 H 是两个图,f 是一个一一映射,将 V(G) 映到 V(H),g 也是一个一一映射将 E(G) 映到 E(H), $\theta = (f,g)$ 。 称 θ 是 G 到 H 的同痕,如果满足下面的性质: 任意的顶点 x 是边 A 的端点当且仅当 f(x) 是边 g(A) 的端点。如果这样的同痕映射 θ 存在,则称图 G 和图 H 是同痕的。

注:图论一般研究的就是同痕图的一些性质,本文中的图都是指在平面中的图,因此也可以称为平面图。其实下面的很多讨论对三维空间的图也是成立的。

定义 2.5 纽结是 S^3 空间中与 S^1 同胚的简单闭曲线;环链就是 S^3 中由若干互不相交纽结组成的子空间。

纽结的 Alexander 多项式、Conway 多项式和 Jones 多项式等都是可以通过纽结的投影图来进行计算的,由于它们都纽结的同痕不变量,所以与投影图的选取是无关的。而投影图就与平面图有着密切的关系。

首先介绍图的双色多项式 Z(G) [1] [3], 它有两个变量 q 和 v, 满足下面三个条件:

- (1) $Z(\bullet G) = q$
- (2) $Z(\bullet G) = qZ(G)$
- $(3) Z(\rightarrow) = Z(\rightarrow) + vZ(\rightarrow)$

引理 2.1 [7] 在双色多项式 Z(q,v) 中,当v=-1 时,双色多项式特殊化为色多项式 P(G) 。 P(G) 表示对图 G 的项点用 q 种颜色着色,并保证相邻的两个项点不同色的着色的方法数目。

例子: $Z(\triangle) = q^3 + 3vq^2 + 3v^2q + v^3q$, 当v = -1时, $P(G) = q^3 - 3q^2 + 2q = q(q-1)(q-2)$ 恰好是平面图三角形着色数目。

引理 2.2 [8]如果图 G 是子图 H 和 K 的不交并,那么 P(G) = P(H)P(K)。

引理 2.3 [8]如果图 G 是子图 H 和 K 的并,满足 $H \cap K$ 是一个顶点,那么

$$qP(G) = P(H)P(K)$$
.

3. 平面图的变换及其着色性质

这部分给出平面图的变换,利用双色多项式来研究这些变换对平面图着色性质的变化情况。

3.1. 树形变换的着色问题

先看一下一种特殊树形——"*m*-弧变换"的情形,可以得到:

命题 3.1 设图 G_n 是由 G 添加 m-弧 L_m 构成,且 $L_m \cap G'$ 是一个顶点,则当 $q \ge 2$ 时, $P(G_n) \ne 0$ 当且仅 当 $P(G_{n-1}) \ne 0$ 。

证明 首先考虑 m=1,则 G_n 是由 G_{n-1} 添加 1-弧构成(见图 3)。

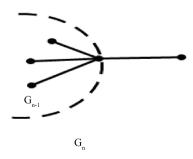


Figure 3. 1-arc 图 3. 1-弧图

由计算可得, $Z(G_n) = Z$ (\rightarrow ') $+vZ(G_{n-1}) = qZ(G_{n-1}) + vZ(G_{n-1}) = (q+v)Z(G_{n-1})$ 。

由引理 2.1 可知,当 v = -1 时, $P(G_n) = (q-1)P(G_{n-1})$,所以 $q \ge 2$ 时, $P(G_n) \ne 0$ 当且仅当 $P(G_{n-1}) \ne 0$ 。 其次,一般情形计算有, $Z(G_n) = (q+v)^m Z(G')$,当 v = -1 时, $P(G_n) = (q-1)^m Z(G')$,所以, $q \ge 2$ 时, $P(G_n) \ne 0$ 当且仅当 $P(G_{n-1}) \ne 0$ 。从而结论成立。

定理 3.1 设图 G_n 由 G' 添加树 T_m 得到,其中 T_m 有 m 个顶点, $T_m \cap G'$ 是一个顶点(见图 4),则当 $q \ge 2$ 时, $P(G_n) \ne 0$ 当且仅当 $P(G') \ne 0$ 。

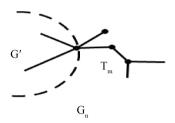


Figure 4. Tree 图 4. 树形图

证明 利用命题 3.1,由归纳法, $Z(G_n) = (q+v)^{m-1} Z(G')$,当v = -1时, $P(G_n) = (q-1)^{m-1} P(G')$,所以 $q \ge 2$ 时, $P(G_n) \ne 0$ 当且仅当 $P(G') \ne 0$ 。从而结论成立。

注 图 G' 是有 G 去掉树形得到的,把这种变换称为树形变换,该定理这说明树 - 变换不改变图的着色数。

3.2. "m - 圈 - 变换"的着色问题

命题 3.2 设图 G_n 由 G_{n-1} 添加一个 3-圈 P 得到, $G_{n-1} \cap P$ 是一个顶点(见图 5),则当 $q \ge 3$ 时, $P(G_n) \ne 0$ 当且仅当 $P(G_{n-1}) \ne 0$ 。

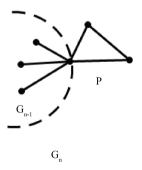


Figure 5. Graph with 3-loop 图 5. 带 3-圈的图

证明 通过计算可得: $Z(G_n) = [(q+2v)(q+v)+v^2(v+1)]Z(G_{n-2})$, 当v=-1时, $P(G_n) = (q-2)(q-1)P(G_{n-1})$, 所以, q=3时, $P(G_n) \neq 0$ 当且仅当 $P(G_{n-1}) \neq 0$ 。从而结论成立。 定理 3.2 设图 G_n 由 G' 添加一个 m-圈 P 得到, $G' \cap P$ 是一个顶点(见图 6),则有

- (1) 当 m 是偶数时,如果 $q \ge 2$,则 $P(G_n) \ne 0$ 当且仅当 $P(G') \ne 0$;
- (2) 当m是奇数时,如果 $q \ge 3$,则 $P(G_n) \ne 0$ 当且仅当 $P(G') \ne 0$ 。证明

$$Z(G_{n}) = Z(G' \cup T_{m}) + vZ(G' \cup P_{m-1})$$

$$= \left[(q+v)^{m-1} + v(q+v)^{m-2} + \dots + v^{m-3} (q+v)^{2} \right] Z(G') + v^{m-2} Z(G' \cup P_{1})$$

$$= \left[(q+v)^{m-1} + v(q+v)^{m-2} + \dots + v^{m-2} (q+v) \right] Z(G') + v^{m-1} Z(G' \cup P_{1})$$

$$= \left[(q+v)^{m-1} + v(q+v)^{m-2} + \dots + v^{m-2} (q+v) + v^{m-1} (v+1) \right] Z(G')$$

$$= \left[\frac{(q+v)^{m-1} \left[1 - \left(\frac{v}{q+v} \right)^{m-1} \right]}{1 - \frac{v}{q+v}} + v^{m-1} (v+1) \right] Z(G')$$

$$= \left[\frac{(q+v) \left[(q+v)^{m-1} - v^{m-1} \right]}{q} + v^{m-1} (v+1) \right] Z(G')$$

当v = -1时, $P(G_n) = \frac{q-1}{q} [(q-1)^{m-1} - (-1)^{m-1}] P(G')$,所以,当m是偶数时,

 $P(G_n) = (q-1) [(q-1)^{m-1} + 1] P(G')$,此时,如果 $q \ge 2$,则 $P(G_n) \ne 0$ 当且仅当 $P(G') \ne 0$ 。当 m 是奇数时, $P(G_n) = (q-1) [(q-1)^{m-1} - 1] P(G')$ 。此时,如果 $q \ge 3$,则 $P(G_n) \ne 0$ 当且仅当 $P(G') \ne 0$ 。从而定理的结论成立。

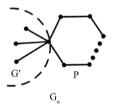


Figure 6. Graph with *m*-loop **图 6.** 带 *m*-圈的图

注 如果把"m-圈-变换"称为三角形变换,该定理说明三角形变换不改变图的着色数。

推论 3.1 设图 G_n 仅有一个 m-圈, G_n 余下的部分是树 T_n ,其中 G_n 有 n 顶点,则有

- (1) 当 m 是偶数时,如果 $q \ge 2$,则 $P(G_n) \ne 0$;
- (2) 当m 是奇数时,如果 $q \ge 3$,则 $P(G_n) \ne 0$ 。

证明 首先看一个特殊情形,设图 G_n 仅有一个 3-圈, G_n 余下的部分是树 T_n ,其中 G_n 有 n 个顶点(见图 7),由定理 3.1 可知,树形不改变着色数,所以, $P(G_n) = P(3-圈) = P(三角形)$,从而当 q = 3 时,结论成立。

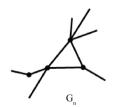


Figure 7. Graph of 3-loop 图 7. 3-圈的图

对于一般情形有 $P(G_n) = P(m-圈) = P(多边形)$,由定理 3.1 和定理 3.2,结论成立。

3.3. 桥变换的着色问题

从而结论成立。

命题 3.3 设 G_n 存在 m 条有相同端点的边 $l_k(k=1,\cdots,m)$, 去掉其中 m-1 条边后的图记为 G'_n ,则 $P(G_n)=P(G'_n)$ 。

证明 如果图 G_n 的两个顶点 x,y 存在两个相同端点的边,去掉其中一条重复边后的图记为 G'_n (见图 8), $Z(G_n)=Z(G'_n)+vZ$ (\longrightarrow),当 v=-1 时, $P(G_n)=P(G'_n)$ 。 一般情形同理可证。

Figure 8. Graph of multiple edges 图 8. 带多重边的图

注 该命题说明在图中如果有两个顶点多重边相连,就可以看成只有一个边相连,这样不改变着色数。如图 8 中, G_n 经过这种变换得到 G_n' ,称这种变换为桥变换。从而说明桥 - 变换不改变图的着色性质。

定理 3.3 设图 G_n 由 G' 添加 m-弧 L_m 得到, $G' \cap L_m$ 是 L_m 的两个端点(见图 9),则有

- (1) 当m为奇数时,如果 $q \ge 3$,则 $P(G_n) \ne 0$ 当且仅当 $P(G') \ne 0$;
- (2) 当 m 为偶数时,如果 $q \ge 2$,则 $P(G_n) \ne 0$ 当且仅当 $P(G') \ne 0$ 。

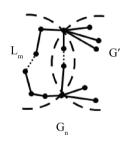


Figure 9. Graph with bridge 图 9. 带桥的图

注 该定理是命题 3.3 的一般化,因此也称进行了桥变换。同时由引理 2.2 和引理 2.3,可以讨论其它图的着色性质。由于纽结投影图与平面图是一一对应关系,所以它们的有些变换是相互转化的,比如: 纽结投影图的 RI 变换就对应图的树形变换。

基金项目

国家自然科学基金(No. 11471151), 辽宁省教育厅(No. LJ2019004)的资助。

参考文献

- [1] Alexander, J.W. (1928) Topological Invariants of Knots and Links. *Transactions of the American Mathematical Society*, **30**, 275-306. https://doi.org/10.1090/S0002-9947-1928-1501429-1
- [2] Conway, J.H. (1970) An Enumeration of Knots and Links, and Some of Their Algebraic Properties. Computational Problems in Abstract Algebra, New York, 29 August-2 September 1970, 329-358. https://doi.org/10.1016/B978-0-08-012975-4.50034-5
- [3] Jones, V.F.R. (1989) On Knot Invariants Related to Some Statistical Mechanical Models. *Pacific Journal of Mathematics*, 137, 311-334. https://doi.org/10.2140/pjm.1989.137.311
- [4] Kauffman, L.H. (1988) New Invariants in the Theory of Knots. The American Mathematical Monthly, 95, 195-242. https://doi.org/10.1080/00029890.1988,11971990
- [5] Wu, F.Y. (1992) Knot Theory and Statistical Mechanics. Modern Physics, 64, 1099-1131. https://doi.org/10.1103/RevModPhys.64.1099
- [6] Sumners, D.W. (1990) Untangling DNA. The Mathematical Intelligencer, 12, 71-80. https://doi.org/10.1007/BF03024022
- [7] Adams, C.C. (2004) The Knot Book. W. H. Freeman and Company, New York.
- [8] 韩友发, 亢云凤, 董婷. 平面图的多项式与着色[J]. 辽宁师范大学学报, 2017, 40(3): 289-292.